Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 1294–1309 | Cite as

X-ray Diffraction Line Profile Analysis of Undoped and Se-Doped SnS Thin Films Using Scherrer’s, Williamson–Hall and Size–Strain Plot Methods

  • Hosein Kafashan
Article
  • 19 Downloads

Abstract

An electrochemical route has been employed to prepare undoped and Se-doped SnS thin films. Six samples including undoped and Se-doped SnS thin films were deposited on the fluorine-doped tin oxide glass substrate. An aqueous solution containing 2 mM SnCl2 and 16 mM Na2S2O3 was used in the electrolyte. Different Se-doped SnS samples were prepared by adding the various amounts of 4 mM SeO2 solution into the electrolyte. The applied potential (E), time of deposition process (t), pH, and bath temperature (T) were kept at − 1 V, 30 min, 2.1, and 60°C, respectively. After the completion of the deposition process, x-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to characterize the deposited thin films. XRD patterns clearly showed that the synthesized undoped and Se-doped SnS thin films were crystallized in the orthorhombic structure. Using Scherrer’s method, the crystallite size of deposited thin films is calculated. In addition, the crystallite size and lattice strain have been estimated using the modified form of the Williamson–Hall (W–H) method containing a uniform deformation model, a uniform deformation stress model, a uniform deformation energy density model, and by the size–strain plot method (SSP). The shape of SnS crystals was spherical in TEM images. The results showed that there was a good agreement in the particle size obtained from the W–H method and the SSP method with TEM images.

Keywords

Line profile analysis Se-doped SnS Williamson–Hall method size–strain plot method thin films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.W. Cornelius and O. Thomas, Prog. Mater Sci. 94, 384 (2018).CrossRefGoogle Scholar
  2. 2.
    S.K. Tippabhotla, I. Radchenko, K.N. Rengarajan, G. Illya, V. Handara, M. Kunz, N. Tamura, and A.S. Budiman, Procedia Eng. 139, 123 (2016).CrossRefGoogle Scholar
  3. 3.
    A.S. Budiman, H.A.S. Shin, B.J. Kim, S.H. Hwang, H.Y. Son, M.S. Suh, Q.H. Chung, K.Y. Byun, N. Tamura, M. Kunz, and Y.C. Joo, Microelectron. Reliab. 52, 530 (2012).CrossRefGoogle Scholar
  4. 4.
    D. Ferri, M.A. Newton, M. Di Michiel, S. Yoon, G.L. Chiarello, V. Marchionni, S.K. Matam, M.H. Aguirre, A. Weidenkaff, and F. Wen, Phys. Chem. Chem. Phys. 15, 8629 (2013).CrossRefGoogle Scholar
  5. 5.
    H. Kafashan, Ceram. Int. 45, 334 (2019).CrossRefGoogle Scholar
  6. 6.
    S. Polivtseva, A. Katerski, E. Kärber, I. Oja Acik, A. Mere, V. Mikli, and M. Krunks, Thin Solid Films 633, 179 (2017).CrossRefGoogle Scholar
  7. 7.
    J.-Y. Kang, S.-M. Kwon, S.H. Yang, J.-H. Cha, J.A. Bae, and C.-W. Jeon, J. Alloys Compd. 711, 294 (2017).CrossRefGoogle Scholar
  8. 8.
    H. Kafashan, F. Jamali-Sheini, R. Ebrahimi-Kahrizsangi, and R. Yousefi, Int. J. Miner. Metall. Mater. 23, 348 (2016).CrossRefGoogle Scholar
  9. 9.
    H. Kafashan, F. Jamali-Sheini, M. Azizieh, Z. Balak, M. Cheraghizade, and H. Nasiri Vatan, J. Alloys Compd. 694, 1338 (2017).CrossRefGoogle Scholar
  10. 10.
    H. Kafashan, F. Jamali-Sheini, R. Ebrahimi-Kahrizsangi, and R. Yousefi, J. Alloys Compd. 681, 595 (2016).CrossRefGoogle Scholar
  11. 11.
    H. Kafashan, R. Ebrahimi-Kahrizsangi, F. Jamali-Sheini, and R. Yousefi, Phys. Status Solidi. A 213, 1302 (2016).CrossRefGoogle Scholar
  12. 12.
    S. Banu, S.J. Ahn, Y.J. Eo, J. Gwak, and A. Cho, Sol. Energy 145, 33 (2017).CrossRefGoogle Scholar
  13. 13.
    J. Kois, S. Bereznev, J. Maricheva, and N. Revathi, Mater. Sci. Semicond. Process. 58, 76 (2017).CrossRefGoogle Scholar
  14. 14.
    B.H. Baby, V.M. Vaisakh, and D. Bharathi Mohan, Mater. Today Proc. 3, 2077 (2016).CrossRefGoogle Scholar
  15. 15.
    P. Nwofe, K.R. Reddy, J. Tan, I. Forbes, and R. Miles, Phys. Procedia 25, 150 (2012).CrossRefGoogle Scholar
  16. 16.
    A. Basak, A. Mondal, and U.P. Singh, Mater. Sci. Semicond. Process. 56, 381 (2016).CrossRefGoogle Scholar
  17. 17.
    Y. Kawano, J. Chantana, and T. Minemoto, Curr. Appl. Phys. 15, 897 (2015).CrossRefGoogle Scholar
  18. 18.
    S. Gedi, V.R.M. Reddy, J.-Y. Kang, and C.-W. Jeon, Appl. Surf. Sci. 402, 463 (2017).CrossRefGoogle Scholar
  19. 19.
    F. Alam and V. Dutta, Appl. Surf. Sci. 358, 491 (2015).CrossRefGoogle Scholar
  20. 20.
    G.G. Ninan, C.S. Kartha, and K.P. Vijayakumar, J. Anal. Appl. Pyrol. 120, 121 (2016).CrossRefGoogle Scholar
  21. 21.
    M. Patel, I. Mukhopadhyay, and A. Ray, J. Alloys Compd. 619, 458 (2015).CrossRefGoogle Scholar
  22. 22.
    T. Řičica, L. StŘižík, L. Dostál, M. Bouška, M. Vlček, L. Beneš, T. Wágner, and R. Jambor, Appl. Organomet. Chem. 29, 176 (2015).CrossRefGoogle Scholar
  23. 23.
    K. Hosein, Mater. Res. Express 5, 046417 (2018).CrossRefGoogle Scholar
  24. 24.
    H. Kafashan, Mater. Sci. Semicond. Process. 88, 148 (2018).CrossRefGoogle Scholar
  25. 25.
    H. Kafashan, M. Azizieh, and Z. Balak, Appl. Surf. Sci. 410, 186 (2017).CrossRefGoogle Scholar
  26. 26.
    H. Kafashan, M. Azizieh, and H. Nasiri Vatan, J. Alloys Compd. 686, 962 (2016).Google Scholar
  27. 27.
    H. Kafashan, and Z. Balak, Spectrochim. Acta, Part A 184, 151 (2017).CrossRefGoogle Scholar
  28. 28.
    C. Gao, H. Shen, and L. Sun, Appl. Surf. Sci. 257, 6750 (2011).CrossRefGoogle Scholar
  29. 29.
    H.Y. He, J. Fei, and J. Lu, Mater. Sci. Semicond. Process. 24, 90 (2014).CrossRefGoogle Scholar
  30. 30.
    C. Gao and H. Shen, Thin Solid Films 520, 3523 (2012).CrossRefGoogle Scholar
  31. 31.
    S. Gedi, V.R. Minnam Reddy, C. Park, J. Chan-Wook, and K.T. Ramakrishna Reddy, Opt. Mater. 42, 468 (2015).CrossRefGoogle Scholar
  32. 32.
    A. Stadler, H.J. Schimper, U. Brendel, D. Topa, A. Basch, and H. Dittrich, Thin Solid Films 519, 7951 (2011).CrossRefGoogle Scholar
  33. 33.
    L.L. Cheng, M.H. Liu, M.X. Wang, S.C. Wang, G.D. Wang, Q.Y. Zhou, and Z.Q. Chen, J. Alloys Compd. 545, 122 (2012).CrossRefGoogle Scholar
  34. 34.
    W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, and W. Xiang, Adv. Powder Technol. 23, 850 (2012).CrossRefGoogle Scholar
  35. 35.
    F. Jiang, H. Shen, C. Gao, B. Liu, L. Lin, and Z. Shen, Appl. Surf. Sci. 257, 4901 (2011).CrossRefGoogle Scholar
  36. 36.
    F. Zakerian, and H. Kafashan, Superlattices Microstruct. 124, 92 (2018).CrossRefGoogle Scholar
  37. 37.
    A. Azmand, and H. Kafashan, Ceram. Int. 44, 17124 (2018).CrossRefGoogle Scholar
  38. 38.
    T. Seymour, P. Frankel, L. Balogh, T. Ungár, S.P. Thompson, D. Jädernäs, J. Romero, L. Hallstadius, M.R. Daymond, G. Ribárik, and M. Preuss, Acta Mater. 126, 102 (2017).CrossRefGoogle Scholar
  39. 39.
    T. Ungar, J. Gubicza, G. Ribarik, and A. Borbely, J. Appl. Crystallogr. 34, 298 (2001).CrossRefGoogle Scholar
  40. 40.
    Z. Fan, B. Jóni, L. Xie, G. Ribárik, and T. Ungár, J. Nucl. Mater. 502, 301 (2018).CrossRefGoogle Scholar
  41. 41.
    X. Chen, C. Dejoie, T. Jiang, C.-S. Ku, and N. Tamura, MRS Bull. 41, 445 (2016).CrossRefGoogle Scholar
  42. 42.
    A.S. Budiman, G. Lee, M.J. Burek, D. Jang, S.M.J. Han, N. Tamura, M. Kunz, J.R. Greer, and T.Y. Tsui, Mater. Sci. Eng., A 538, 89 (2012).CrossRefGoogle Scholar
  43. 43.
    I. Radchenko, S.K. Tippabhotla, N. Tamura, and A.S. Budiman, J. Electron. Mater. 45, 6222 (2016).CrossRefGoogle Scholar
  44. 44.
    A. Davydok, T.W. Cornelius, C. Mocuta, E.C. Lima, E.B. Araujo, and O. Thomas, Thin Solid Films 603, 29 (2016).CrossRefGoogle Scholar
  45. 45.
    X.M. Zeng, Z. Du, N. Tamura, Q. Liu, C.A. Schuh, and C.L. Gan, Acta Mater. 134, 257 (2017).CrossRefGoogle Scholar
  46. 46.
    J. Kou, K. Chen, and N. Tamura, Scripta Mater. 143, 49 (2018).CrossRefGoogle Scholar
  47. 47.
    N. Vaxelaire, S. Labat, T.W. Cornelius, C. Kirchlechner, J. Keckes, T. Schulli, and O. Thomas, Acta Mater. 78, 46 (2014).CrossRefGoogle Scholar
  48. 48.
    R. Sivakami, S. Dhanuskodi, and R. Karvembu, Spectrochim. Acta, Part A 152, 43 (2016).CrossRefGoogle Scholar
  49. 49.
    G.H. Khorrami, A. Khorsand Zak, A. Kompany, and R. Yousefi, Ceram. Int. 38, 5683 (2012).CrossRefGoogle Scholar
  50. 50.
    A.S. Budiman, P.R. Besser, C.S. Hau-Riege, A. Marathe, Y.C. Joo, N. Tamura, J.R. Patel, and W.D. Nix, J. Electron. Mater. 38, 379 (2009).CrossRefGoogle Scholar
  51. 51.
    A. Budiman, W. Nix, N. Tamura, B. Valek, K. Gadre, J. Maiz, R. Spolenak, and J. Patel, Appl. Phys. Lett. 88, 233515 (2006).CrossRefGoogle Scholar
  52. 52.
    T.M.K. Thandavan, S.M.A. Gani, C. San Wong, and R.M. Nor, J. Nondestr. Eval. 34, 14 (2015).CrossRefGoogle Scholar
  53. 53.
    J.-M. Zhang, Y. Zhang, K.-W. Xu, and V. Ji, Solid State Commun. 139, 87 (2006).CrossRefGoogle Scholar
  54. 54.
    V. Biju, N. Sugathan, V. Vrinda, and S.L. Salini, J. Mater. Sci. 43, 1175 (2008).CrossRefGoogle Scholar
  55. 55.
    J. Morales, E. Andrade, and M. Miki-Yoshida, Thin Solid Films 366, 16 (2000).CrossRefGoogle Scholar
  56. 56.
    M. Devika, N.K. Reddy, K. Ramesh, K. Gunasekhar, E. Gopal, and K.R. Reddy, J. Electrochem. Soc. 153, G727 (2006).CrossRefGoogle Scholar
  57. 57.
    K. Rogers and P. Daniels, Biomaterials 23, 2577 (2002).CrossRefGoogle Scholar
  58. 58.
    J. Malleshappa, H. Nagabhushana, S.C. Sharma, D.V. Sunitha, N. Dhananjaya, C. Shivakumara, and B.M. Nagabhushana, J. Alloys Compd. 590, 131 (2014).CrossRefGoogle Scholar
  59. 59.
    Y. Rosenberg, V.S. Machavariani, A. Voronel, S. Garber, A. Rubshtein, A. Frenkel, and E. Stern, J. Phys.: Condens. Matter 12, 8081 (2000).Google Scholar
  60. 60.
    P.K. Jisha, R. Naik, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa, K.S. Anantharaju, B.D. Prasad, and H.B. Premkumar, J. Lumin. 163, 47 (2015).CrossRefGoogle Scholar
  61. 61.
    G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
  62. 62.
    K.-C. Feng, Y.-H. Su, C.-C. Chou, Z.-M. Liu, and L.-W. Chu, Chin. J. Phys. 50, 932 (2012).Google Scholar
  63. 63.
    K. Reimann and R. Würschum, J. Appl. Phys. 81, 7186 (1997).CrossRefGoogle Scholar
  64. 64.
    J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford: Oxford University Press, 1985).Google Scholar
  65. 65.
    X. He, H. Shen, W. Wang, Z. Wang, B. Zhang, and X. Li, J. Alloys Compd. 556, 86 (2013).CrossRefGoogle Scholar
  66. 66.
    K.A. Aly, N.M. Khalil, Y. Algamal, and Q.M.A. Saleem, J. Alloys Compd. 676, 606 (2016).CrossRefGoogle Scholar
  67. 67.
    M.A. Tagliente and M. Massaro, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 1055 (2008).CrossRefGoogle Scholar
  68. 68.
    A. Khorsand Zak, W.H.A. Majid, M. Ebrahimizadeh Abrishami, R. Yousefi, and R. Parvizi, Solid State Sci. 14, 488 (2012).CrossRefGoogle Scholar
  69. 69.
    Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, and B.S. Kumari, World J. Nano Sci. Eng. 4, 21 (2014).CrossRefGoogle Scholar
  70. 70.
    A. Khorsand Zak, W.H. Abd, M.E.Abrishami Majid, and R. Yousefi, Solid State Sci. 13, 251 (2011).CrossRefGoogle Scholar
  71. 71.
    B. Choudhury and A. Choudhury, Mater. Chem. Phys. 131, 666 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Ahvaz BranchIslamic Azad UniversityAhvazIran

Personalised recommendations