Journal of Electronic Materials

, Volume 48, Issue 2, pp 898–903 | Cite as

Effect of Doped Sb2O3 on the Electrical Properties of TiO2-Based Ceramics with the Dual Function of a Varistor–Capacitor

  • Shuaijun Yang
  • Dachuan ZhuEmail author
  • Fengchao Peng
  • Yadong Li


TiO2-based varistor–capacitor ceramics co-doped with fixed Nb2O5, MnO2, Sm2O3 and various content of Sb2O3 are prepared, and then the effect of Sb2O3 on electrical properties of TiO2 varistor–capacitor ceramics is investigated. The results indicate that addition of Sb2O3 effectively decreases breakdown voltage (E1mA), while having less impact on the nonlinear coefficient (α). E1mA initially increases and then decreases with Sb2O3 increasing; contrarily, relative dielectric constant (εr) decreases first and then increases. It is found that composition of 98.3%TiO2-0.8%Nb2O5-0.3%MnO2-0.3%Sm2O3-0.3%Sb2O3 is obtained with a low breakdown voltage of 2.3 V/mm, nonlinear coefficient of 2.0, high relative dielectric constant of 7.6 × 104 and low dissipation factor of 0.25, which is consistent with the narrowest grain boundary barriers in the composition. The nonlinear coefficient initially increases and then decreases with increase of Sb2O3; it reaches a maximum value of 2.9 at 0.2 mol.% Sb2O3, which is consistent with the highest grain boundary barriers in the composition. In order to explain the nonlinear current–voltage characteristics, a grain boundary defect barrier model was introduced.


Varistor ceramics nonlinear properties relative dielectric constant grain boundary defect barrier model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Funding was provided by the Science and Technology Support Program in Sichuan (Grant No. Project2014GZ0090).


  1. 1.
    R.G.F. Neto, E.C.F. de Souza, A.V.C. de Andrade, S.R.M. Antunes, and A.C. Antunes, J. Mater. Sci. Mater. Electron. 24, 938 (2013).CrossRefGoogle Scholar
  2. 2.
    S.C. Navale, A. Vadivel Murugan, and V. Ravi, Ceram. Int. 33, 301 (2007).CrossRefGoogle Scholar
  3. 3.
    H. Bastami and E. Taheri-Nassaj, Ceram. Int. 38, 265 (2012).CrossRefGoogle Scholar
  4. 4.
    C.W. Nahm, J. Alloy. Compd. 578, 132 (2013).CrossRefGoogle Scholar
  5. 5.
    M.A.A. Santana, F.S.N. dos Santos, V.C. Sousa, and Q.S.H. Chui, Measurement 41, 1105 (2008).CrossRefGoogle Scholar
  6. 6.
    V.C. De Sousa, M.M. Oliveira, M. Orlandi, E.R. Leite, and E. Longo, J. Mater. Sci. Mater. Electron. 17, 79 (2006).CrossRefGoogle Scholar
  7. 7.
    W.Y. Wang, D.F. Zhang, and T. Xu, Appl. Phys. A 76, 71 (2003).CrossRefGoogle Scholar
  8. 8.
    S. Begum and I.R. Daud, Int. J. Appl. Ceram. Technol. 12, 1189 (2015).CrossRefGoogle Scholar
  9. 9.
    C.P. Li, J.F. Wang, X.S. Wang, W.B. Su, and H.C. Chen, Mater. Sci. Eng. B 85, 6 (2001).CrossRefGoogle Scholar
  10. 10.
    Y.Y. Gong, R.Q. Chu, Z.J. Xu, J. Sun, F.X. Chao, S. Ma, and J.G. Hao, Ceram. Int. 41, 9183 (2015).CrossRefGoogle Scholar
  11. 11.
    Y.Y. Gong, R.Q. Chu, and Z.J. Xu, J. Mater. Sci. Mater. Electron. 26, 7232 (2015).CrossRefGoogle Scholar
  12. 12.
    V.C. Sousa, E.R. Leite, J.A. Varela, and E. Longo, J. Eur. Ceram. Soc. 22, 1277 (2002).CrossRefGoogle Scholar
  13. 13.
    M.I. Mendelson and J. Am, Ceram. Soc. 52, 443 (1969).CrossRefGoogle Scholar
  14. 14.
    J.F. Wang, Chin. Phys. Lett. 17, 530 (2000).CrossRefGoogle Scholar
  15. 15.
    L.M. Lionel and H.R. Philipp, Ceram. Bull. 65, 639 (1986).Google Scholar
  16. 16.
    M.S. Ramanachalam, A. Rohatgi, and W.B. Carter, J. Electron. Mater. 24, 413 (1995).CrossRefGoogle Scholar
  17. 17.
    S.H. Luo, Z.L. Tang, J.Y. Li, and Z.T. Zhang, Ceram. Int. 34, 1345 (2008).CrossRefGoogle Scholar
  18. 18.
    T.K. Gupta, W.D. Straub, and M.S. Ramanachalam, J. Appl. Phys. 66, 6132 (1989).CrossRefGoogle Scholar
  19. 19.
    T.K. Gupta and W.G. Carlson, J. Mater. Sci. 20, 3487 (1985).CrossRefGoogle Scholar
  20. 20.
    S.A. Pianaro, J. Mater. Sci. Lett. 16, 634 (1997).CrossRefGoogle Scholar
  21. 21.
    J.M. Wu and C.J. Chen, J. Mater. Sci. 23, 4157 (1988).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Shuaijun Yang
    • 1
  • Dachuan Zhu
    • 1
    Email author
  • Fengchao Peng
    • 1
  • Yadong Li
    • 1
  1. 1.Department of Materials Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations