Journal of Electronic Materials

, Volume 48, Issue 2, pp 1276–1285 | Cite as

Elevated Temperature Behavior of CuPb18SbTe20/Nano-Ag/Cu Joints for Thermoelectric Devices

  • B. Jayachandran
  • R. Gopalan
  • T. Dasgupta
  • D. Sivaprahasam


The thermal stability of the CuPb18SbTe20 thermoelectric legs and Cu electrodes bonded through sintering of nano-silver (n-Ag) paste was investigated after isothermal annealing of the joint at 400°C and 500°C for different times. The legs, prepared from spark plasma sintered (SPS) compacts of the pure CuPb18SbTe20 phase were electroplated with a 3-5 μm thick Ni barrier layer prior to bonding with the electrodes. The n-Ag layer, sintered to a relative density of around 95%, produced defect-free joints with interfaces excluding any reaction layers. The lowest specific contact resistance i.e., 136 μΩ cm2 was observed in joints with the 5 μm n-Ag layer, though it was increased about five times without a Ni barrier layer. Following thermal treatment, various interfaces of the n-CuPb18SbTe20/n-Ag/Cu joints underwent degradation reactions to produce compounds such as Cu2Te, Ag2Te in the TE legs. Under long duration of thermal treatment at 400°C, the Ni barrier layer also completely dissolved and formed a Ni (Sb1−xTex)1+y phase. The Seebeck coefficient and the electrical resistivity of the TE legs were degraded to the tune of 42 and 165%, respectively, due to the formation of secondary phases. The bonding of CuPb18SbTe20 legs and Cu electrodes through sintering of n-Ag paste necessitates a suitable barrier layer that is stable at 500°C, the intended maximum operating temperatures of PbTe-based modules.


Thermoelectric materials PbTe nanosilver contact resistance diffusion barrier 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2018_6789_MOESM1_ESM.pdf (339 kb)
Supplementary material 1 (PDF 338 kb)


  1. 1.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (Oxford: Taylor and Francis Group, 2006).Google Scholar
  2. 2.
    G. Tan, F. Shi, S. Hao, L.D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nat. Commun. 7, 12167 (2016).CrossRefGoogle Scholar
  3. 3.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).CrossRefGoogle Scholar
  4. 4.
    W. Liu, Q. Jie, H.S. Kim, and Z. Ren, Acta Mater. 87, 357 (2015).CrossRefGoogle Scholar
  5. 5.
    Q.H. Zhang, X.Y. Huang, S.Q. Bai, X. Shi, C. Uher, and L.D. Chen, Adv. Eng. Mater. 18, 194 (2016).CrossRefGoogle Scholar
  6. 6.
    A.L. Eiss, Thermoelectric Bonding Study (NASA: Washington D.C, 1966).Google Scholar
  7. 7.
    H.C. Hsieh, C.H. Wang, W.C. Lin, S. Chakroborty, T.H. Lee, H.S. Chu, and A.T. Wu, J. Alloys Compd. 728, 1023 (2017).CrossRefGoogle Scholar
  8. 8.
    X. Hu, P. Jood, M. Ohta, M. Kunii, K. Nagase, H. Nishiate, M.G. Kanatzidis, and A. Yamamoto, Energy Environ. Sci. 9, 517 (2016).CrossRefGoogle Scholar
  9. 9.
    T.H. Chuang, W.T. Yeh, C.H. Chuans, and J.D. Hwang, J. Alloys Compd. 613, 46 (2014).CrossRefGoogle Scholar
  10. 10.
    T.H. Chung, H.J. Lin, C.H. Chuang, W.T. Yeh, J.D. Hwang, and H.S. Chu, J. Electron. Mater. 43, 4610 (2014).CrossRefGoogle Scholar
  11. 11.
    H. Xia, F. Drymiotis, C.L. Chen, A. Wu, and G.J. Snyder, J. Mater. Sci. 49, 1716 (2014).CrossRefGoogle Scholar
  12. 12.
    X.R. Ferreres, S.A. Yamini, M. Nancarrow, and C. Zhang, Mater. Des. 107, 90 (2016).CrossRefGoogle Scholar
  13. 13.
    X.R. Ferreres, A. Gazder, A. Manettas, and S.A. Yamini, ACS Appl. Energy Mater. 1, 348 (2018).CrossRefGoogle Scholar
  14. 14.
    M. Weinstein and A.I. Mlavsky, Rev. Sci. Instrum. 33, 1119 (1962).CrossRefGoogle Scholar
  15. 15.
    A. Singh, S. Bhattacharya, C. Thinaharan, D.K. Aswal, S.K. Gupta, J.V. Yakhmi, and K. Bhanumurthy, J. Phys. D Appl. Phys. 42, 015502 (2009).CrossRefGoogle Scholar
  16. 16.
    H. Xia, C.L. Chen, F. Drymiotis, A. Wu, Y.Y. Chen, and G.J. Synder, J. Electron. Mater. 43, 4064 (2014).CrossRefGoogle Scholar
  17. 17.
    D. Ben-Ayoun, Y. Sadia, and Y. Gelbstein, Materials 11, 99 (2018).CrossRefGoogle Scholar
  18. 18.
    H. Xia, F. Drymiotis, C.L. Chen, A. Wu, Y.Y. Chen, and G.J. Synder, J. Mater. Sci. 50, 2700 (2015).CrossRefGoogle Scholar
  19. 19.
    D.K. Aswal, R. Basu, and A. Singh, Energy Convers. Manag. 114, 50 (2016).CrossRefGoogle Scholar
  20. 20.
    D. Zhao, X. Li, L. He, W. Jiang, and L.D. Chen, Intermetallics 17, 136 (2009).CrossRefGoogle Scholar
  21. 21.
    W. Chen, S. Chen, S. Tseng, H. Hsiao, Y. Chen, G.J. Snyder, and Y. Tang, J. Alloys Compd. 632, 500 (2015).CrossRefGoogle Scholar
  22. 22.
    M. Gu, X. Xia, X. Huang, S. Bai, X. Li, and L. Chen, J. Alloys Compd. 671, 238 (2016).CrossRefGoogle Scholar
  23. 23.
    M. Edwards, K. Brinkfeldt, U. Rusche, T. Bukes, G. Gaiser, M.D. Silva, and D. Andersson, Microelectron. Reliab. 55, 722 (2015).CrossRefGoogle Scholar
  24. 24.
    H. Li, H. Jing, Y. Han, G. Lu, L. Xu, and T. Liu, Mater. Des. 89, 604 (2016).CrossRefGoogle Scholar
  25. 25.
    H. Li, H. Jing, Y. Han, G. Lu, L. Xu, and T. Liu, J. Alloys Compd. 659, 95 (2016).CrossRefGoogle Scholar
  26. 26.
    A. Stranz, A. Waag, and E. Peiner, J. Electron. Mater. 44, 2055 (2015).CrossRefGoogle Scholar
  27. 27.
    W. Wu, A. Bentaleb, A. Waag, and E. Peiner, Mater. Today Proc. 5, 10401 (2018).CrossRefGoogle Scholar
  28. 28.
    J.L. Lensch-Falk, J.D. Sugar, M.A. Hekmaty, and D.L. Medlin, J. Alloys Compd. 504, 37 (2010).CrossRefGoogle Scholar
  29. 29.
    A.S. Pashinkin and V.A. Fedorov, Inorg. Mater. 39, 539 (2003).CrossRefGoogle Scholar
  30. 30.
    S. Bajaj, G.S. Pomrehn, J.W. Doak, W. Gierlotka, H.J. Wu, S.W. Chen, C. Wolverton, W.A. Goddard, and G.J. Snyder, Acta Mater. 92, 72 (2015).CrossRefGoogle Scholar
  31. 31.
    Y. Xiao, H. Wu, W. Li, M. Yin, Y. Pei, Y. Zhang, L. Fu, Y. Chen, S.J. Pennycook, L. Huang, J. He, and L.D. Zhao, J. Am. Chem. Soc. 139, 18732 (2017).CrossRefGoogle Scholar
  32. 32.
    V.Ya. Shemet, L.D. Gulay, J. Stępień-Damm, A. Pietraszko, and I.D. Olekseyuk, J. Alloys Compd. 420, 58 (2006).CrossRefGoogle Scholar
  33. 33.
    Q. Wang, Z. Su, M. Lv, J. Li, B. Sun, and G. Zhang, RSC Adv. 6, 50599 (2016).CrossRefGoogle Scholar
  34. 34.
    M.A. Nicolet and M. Bartur, J. Vac. Sci. Technol. 19, 786 (1981).CrossRefGoogle Scholar
  35. 35.
    A.D. Lalonde, Y. Pei, H. Wang, and G.J. Snyder, Mater. Today 14, 526 (2011).CrossRefGoogle Scholar
  36. 36.
    K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).CrossRefGoogle Scholar
  37. 37.
    Y. Sadia, T. Ohaion-Raz, O. Ben-Yehuda, M. Korngold, and Y. Gelbstein, J. Solid State Chem. 241, 79 (2016).CrossRefGoogle Scholar
  38. 38.
    C.C. Li, F. Drymiotis, L.L. Liao, H.T. Hung, J.H. Ke, C.K. Liu, C.R. Kao, and G.J. Snyder, J. Mater. Chem. C 3, 10590 (2015).CrossRefGoogle Scholar
  39. 39.
    C. Schneider, P. Schichtel, B. Mogwitz, M. Rohnke, and J. Janek, Solid State Ionics 303, 119 (2017).CrossRefGoogle Scholar
  40. 40.
    T. Grossfeld, A. Sheskin, Y. Gelbstein, and Y. Amouyal, Crystals 7, 281 (2017).CrossRefGoogle Scholar
  41. 41.
    W. Liu, H. Wang, L. Wang, X. Wang, G. Joshi, G. Chen, and Z. Ren, J. Mater. Chem. A 1, 13093 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • B. Jayachandran
    • 1
    • 2
  • R. Gopalan
    • 1
  • T. Dasgupta
    • 2
  • D. Sivaprahasam
    • 1
  1. 1.Centre for Automotive Energy Materials (CAEM), International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)IIT M Research ParkTaramani, ChennaiIndia
  2. 2.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology (IIT) - BombayMumbaiIndia

Personalised recommendations