Skip to main content
Log in

Study of Rashba Spin–Orbit Field at LaAlO3/SrTiO3 Heterointerfaces

  • 5th International Conference of Asian Union of Magnetics Societies
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Oxide interfaces such as LaAlO3/SrTiO3 (LAO/STO) are interesting platforms for the investigation of ‘spin–orbitronics’ because of their strongly coupled spin and orbital degrees of freedom due to the inversion asymmetry of the structure. In this investigation, we demonstrate a tunable Rashba spin–orbit field at the LAO/STO interface via the application of an external gate electric field. The strength of the Rashba field was indirectly estimated by measuring the planar angle dependence of the anisotropic magnetoresistance (AMR). The asymmetry of the planar AMR between θ = 0 and π indicates the existence of Rashba spin–orbit fields, which are tunable by adjusting the current density and gate electric field. From the AMR measurements, the effective Rashba field exhibits up to 4 T for the application of an external back-gate voltage of 30 V. This controllable and relatively high Rashba field suggests that the LAO/STO is an attractive 2-D interface for potential spin–orbitronic applications, such as spin-charge converters, spin-FETs, and spin–orbit torque devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Shigehiko, S. Junji, N. Kazuo, I. Tomonori, and H. Satoshi, Jpn. J. Appl. Phys. 23, L573 (1984).

    Article  Google Scholar 

  2. T.Y. Lee, J. Chang, M.C. Hickey, H.C. Koo, H.-J. Kim, S.H. Han, and J.S. Moodera, Appl. Phys. Lett. 98, 202504 (2011).

    Article  Google Scholar 

  3. H.C. Koo, H. Yi, J.-B. Ko, J. Chang, S.-H. Han, D. Jung, S.-G. Huh, and J. Eom, Appl. Phys. Lett. 90, 022101 (2007).

    Article  Google Scholar 

  4. T. Akazaki, K. Arai, T. Enoki, and Y. Ishii, IEEE Electron. Dev. Lett. 13, 325 (1992).

    Article  Google Scholar 

  5. A. Ohtomo and H.Y. Hwang, Nature 427, 423 (2004).

    Article  Google Scholar 

  6. S. Thiel, G. Hammerl, A. Schmehl, C.W. Schneider, and J. Mannhart, Science 313, 1942 (2006).

    Article  Google Scholar 

  7. G. Herranz, M. Basletic, M. Bibes, C. Carretero, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzic, J.M. Broto, A. Barthelemy, and A. Fert, Phys. Rev. Lett. 98, 216803 (2007).

    Article  Google Scholar 

  8. M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and Y. Dagan, Phys. Rev. Lett. 104, 126802 (2010).

    Article  Google Scholar 

  9. K.-H. Kim, H.-J. Kim, H.C. Koo, J. Chang, and S.-H. Han, Appl. Phys. Lett. 97, 012504 (2010).

    Article  Google Scholar 

  10. A.M. Gilbertson, M. Fearn, J.H. Jefferson, B.N. Murdin, P.D. Buckle, and L.F. Cohen, Phys. Rev. B 77, 165335 (2008).

    Article  Google Scholar 

  11. J.P. Heida, B.J. van Wees, J.J. Kuipers, T.M. Klapwijk, and G. Borghs, Phys. Rev. B 57, 11911 (1998).

    Article  Google Scholar 

  12. E. Lesne, Y. Fu, S. Oyarzun, J.C. Rojas-Sanchez, D.C. Vaz, H. Naganuma, G. Sicoli, J.P. Attane, M. Jamet, E. Jacquet, J.M. George, A. Barthelemy, H. Jaffres, A. Fert, M. Bibes, and L. Vila, Nat. Mater. 15, 1261 (2016).

    Article  Google Scholar 

  13. Q. Song, H. Zhang, T. Su, W. Yuan, Y. Chen, W. Xing, J. Shi, J. Sun, and W. Han, Sci. Adv. 3, e1602312 (2017).

    Article  Google Scholar 

  14. Y. Wang, R. Ramaswamy, M. Motapothula, K. Narayanapillai, D. Zhu, J. Yu, T. Venkatesan, and H. Yang, Nano Lett. 17, 7659 (2017).

    Article  Google Scholar 

  15. N. Reyren, M. Bibes, E. Lesne, J.M. George, C. Deranlot, S. Collin, A. Barthelemy, and H. Jaffres, Phys. Rev. Lett. 108, 186802 (2012).

    Article  Google Scholar 

  16. M.J. Jin, S.Y. Moon, J. Park, V. Modepalli, J. Jo, S.I. Kim, H.C. Koo, B.C. Min, H.W. Lee, S.H. Baek, and J.W. Yoo, Nano Lett. 17, 36 (2017).

    Article  Google Scholar 

  17. A.D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.M. Triscone, Nature 456, 624 (2008).

    Article  Google Scholar 

  18. H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).

    Article  Google Scholar 

  19. C.W. Bark, P. Sharma, Y. Wang, S.H. Baek, S. Lee, S. Ryu, C.M. Folkman, T.R. Paudel, A. Kumar, S.V. Kalinin, A. Sokolov, E.Y. Tsymbal, M.S. Rzchowski, A. Gruverman, and C.B. Eom, Nano Lett. 12, 1765 (2012).

    Article  Google Scholar 

  20. S.I. Kim, D.H. Kim, Y. Kim, S.Y. Moon, M.G. Kang, J.K. Choi, H.W. Jang, S.K. Kim, J.W. Choi, S.J. Yoon, H.J. Chang, C.Y. Kang, S. Lee, S.H. Hong, J.S. Kim, and S.H. Baek, Adv. Mater. 25, 4612 (2013).

    Article  Google Scholar 

  21. N. Reyren, S. Thiel, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.S. Ruetschi, D. Jaccard, M. Gabay, D.A. Muller, J.M. Triscone, and J. Mannhart, Science 317, 1196 (2007).

    Article  Google Scholar 

  22. A.D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J.M. Triscone, Phys. Rev. Lett. 104, 126803 (2010).

    Article  Google Scholar 

  23. A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J.C. Maan, W.G. Van der Wiel, G. Rijnders, D.H.A. Blank, and H. Hilgenkamp, Nat. Mater. 6, 493 (2007).

    Article  Google Scholar 

  24. Ariando, X. Wang, G. Baskaran, Z.Q. Liu, J. Huijben, J.B. Yi, A. Annadi, A. Roy Barman, A. Rusydi, S. Dhar, Y.P. Feng, J. Ding, H. Hilgenkamp, and T. Venkatesan, Nat. Commun. 2, 188 (2011).

  25. B. Kalisky, J.A. Bert, B.B. Klopfer, C. Bell, H.K. Sato, M. Hosoda, Y. Hikita, H.Y. Hwang, and K.A. Moler, Nat. Commun. 3, 922 (2012).

    Article  Google Scholar 

  26. J.S. Lee, Y.W. Xie, H.K. Sato, C. Bell, Y. Hikita, H.Y. Hwang, and C.C. Kao, Nat. Mater. 12, 703 (2013).

    Article  Google Scholar 

  27. F. Bi, M.C. Huang, S. Ryu, H. Lee, C.W. Bark, C.B. Eom, P. Irvin, and J. Levy, Nat. Commun. 5, 5019 (2014).

    Article  Google Scholar 

  28. S. Banerjee, O. Erten, and M. Randeria, Nat. Phys. 9, 625 (2013).

    Article  Google Scholar 

  29. T.D.N. Ngo, J.W. Chang, K. Lee, S. Han, J.S. Lee, Y.H. Kim, M.H. Jung, Y.J. Doh, M.S. Choi, J. Song, and J. Kim, Nat. Commun. 6, 8035 (2015).

    Article  Google Scholar 

  30. D.A. Dikin, M. Mehta, C.W. Bark, C.M. Folkman, C.B. Eom, and V. Chandrasekhar, Phys. Rev. Lett. 107, 056802 (2011).

    Article  Google Scholar 

  31. L. Li, C. Richter, J. Mannhart, and R.C. Ashoori, Nat. Phys. 7, 762 (2011).

    Article  Google Scholar 

  32. J.A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H.Y. Hwang, and K.A. Moler, Nat. Phys. 7, 767–771 (2011).

    Article  Google Scholar 

  33. C. Kim and S.R. Park, Physics and High Technology 23, 25 (2014).

    Article  Google Scholar 

  34. A. Fete, S. Gariglio, A.D. Caviglia, J.M. Triscone, and M. Gabay, Phys. Rev. B 86, 201105(R) (2012).

    Article  Google Scholar 

  35. H.X. Liang, L. Cheng, L.M. Wei, Z.L. Luo, G.L. Yu, C.G. Zeng, and Z.Y. Zhang, Phys. Rev. B 92, 075309 (2015).

    Article  Google Scholar 

  36. K. Gopinadhan, A. Annadi, Y. Kim, A. Srivastava, B. Kumar, J.S. Chen, J.M.D. Coey, Ariando, and T. Venkatesan, Adv. Electron. Mater. 1, 1500114 (2015).

  37. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

    Article  Google Scholar 

  38. H.C. Koo, J.H. Kwon, J. Eom, J. Chang, S.H. Han, and M. Johnson, Science 325, 1515 (2009).

    Article  Google Scholar 

  39. A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, and R.A. Duine, Nat. Mater. 14, 871 (2015).

    Article  Google Scholar 

  40. J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).

    Article  Google Scholar 

  41. H.C. Koo, J.H. Kwon, J. Eom, J. Chang, S.H. Han, and M. Johnson, Science 325, 1515 (2009).

    Article  Google Scholar 

  42. K. Takase, Y. Ashikawa, G. Zhang, K. Tateno, and S. Sasaki, Sci. Rep. 7, 930 (2017).

    Article  Google Scholar 

  43. K. Narayanapillai, K. Gopinadhan, X. Qiu, A. Annadi, Ariando, T. Venkatesan, and H. Yang, Appl. Phys. Lett. 105, 162405 (2014).

  44. K. Narayanapillai, G. Go, R. Ramaswamy, K. Gopinadhan, D. Go, H.-W. Lee, T. Venkatesan, K.-J. Lee, and H. Yang, Phys. Rev. B 96, 064401 (2017).

    Article  Google Scholar 

  45. A. Joshua, J. Ruhman, S. Pecker, E. Altman, and S. Ilani, PNAS 110, 9633 (2013).

    Article  Google Scholar 

  46. K. Han, N. Palina, S.W. Zeng, Z. Huang, C.J. Li, W.X. Zhou, D.Y. Wan, L.C. Zhang, X. Chi, R. Guo, J.S. Chen, T. Venkatesan, A. Rusydi, and Ariando, Sci. Rep. 6, 25455 (2016).

  47. M.M. Ramin Moayed, T. Bielewicz, M.S. Zollner, C. Herrmann, and C. Klinke, Nat. Commun. 8, 15721 (2017).

    Article  Google Scholar 

  48. M. BenShalom, C.W. Tai, Y. Lereah, M. Sachs, E. Levy, D. Rakhmilevitch, A. Palevski, and Y. Dagan, Phys. Rev. B 80, 140403(R) (2009).

    Article  Google Scholar 

  49. M. Basletic, J.L. Maurice, C. Carretero, G. Herranz, O. Copie, M. Bibes, E. Jacquet, K. Bouzehouane, S. Fusil, and A. Barthelemy, Nat. Mater. 7, 621 (2008).

    Article  Google Scholar 

  50. L.Q. Liu, C.F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, and R.A. Buhrman, Science 336, 555 (2012).

    Article  Google Scholar 

  51. J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, T. Suzuki, S. Mitani, and H. Ohno, Nat. Mater. 12, 240 (2013).

    Article  Google Scholar 

  52. Y. Kim, R.M. Lutchyn, and C. Nayak, Phys. Rev. B 87, 245121 (2013).

    Article  Google Scholar 

  53. G. Khalsa, B. Lee, and A.H. MacDonald, Phys. Rev. B 88, 041302(R) (2013).

    Article  Google Scholar 

  54. Z. Zhong, A. Tóth, and K. Held, Phys. Rev. B 87, 161102(R) (2013).

    Article  Google Scholar 

  55. S. Hurand, A. Jouan, C. Feuillet-Palma, G. Singh, J. Biscaras, E. Lesne, N. Reyren, A. Barthelemy, M. Bibes, J.E. Villegas, C. Ulysse, X. Lafosse, M. Pannetier-Lecoeur, S. Caprara, M. Grilli, J. Lesueur, and N. Bergeal, Sci. Rep. 5, 12751 (2015).

    Article  Google Scholar 

  56. D. Stornaiuolo, S. Gariglio, A. Fête, M. Gabay, D. Li, D. Massarotti, and J.M. Triscone, Phys. Rev. B 90, 235426 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2017R1A6A3A01012106). This research was also funded by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (2017R1A2B4008286 and 2017M3A7B4049172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Woo Yoo.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, MJ., Kim, SI., Moon, S.Y. et al. Study of Rashba Spin–Orbit Field at LaAlO3/SrTiO3 Heterointerfaces. J. Electron. Mater. 48, 1347–1352 (2019). https://doi.org/10.1007/s11664-018-6788-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6788-2

Keywords

Navigation