Journal of Electronic Materials

, Volume 48, Issue 3, pp 1347–1352 | Cite as

Study of Rashba Spin–Orbit Field at LaAlO3/SrTiO3 Heterointerfaces

  • Mi-Jin Jin
  • Shin-Ik Kim
  • Seon Young Moon
  • Daeseong Choe
  • Jungmin Park
  • Vijayakumar Modepalli
  • Junhyeon Jo
  • Inseon Oh
  • Seung-Hyub Baek
  • Jung-Woo YooEmail author
5th International Conference of Asian Union of Magnetics Societies
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)


Oxide interfaces such as LaAlO3/SrTiO3 (LAO/STO) are interesting platforms for the investigation of ‘spin–orbitronics’ because of their strongly coupled spin and orbital degrees of freedom due to the inversion asymmetry of the structure. In this investigation, we demonstrate a tunable Rashba spin–orbit field at the LAO/STO interface via the application of an external gate electric field. The strength of the Rashba field was indirectly estimated by measuring the planar angle dependence of the anisotropic magnetoresistance (AMR). The asymmetry of the planar AMR between θ = 0 and π indicates the existence of Rashba spin–orbit fields, which are tunable by adjusting the current density and gate electric field. From the AMR measurements, the effective Rashba field exhibits up to 4 T for the application of an external back-gate voltage of 30 V. This controllable and relatively high Rashba field suggests that the LAO/STO is an attractive 2-D interface for potential spin–orbitronic applications, such as spin-charge converters, spin-FETs, and spin–orbit torque devices.


LAO/STO conductive oxide interface Rashba spin–orbit interaction spin–orbitronics oxide spintronics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2017R1A6A3A01012106). This research was also funded by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (2017R1A2B4008286 and 2017M3A7B4049172).

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    S. Shigehiko, S. Junji, N. Kazuo, I. Tomonori, and H. Satoshi, Jpn. J. Appl. Phys. 23, L573 (1984).CrossRefGoogle Scholar
  2. 2.
    T.Y. Lee, J. Chang, M.C. Hickey, H.C. Koo, H.-J. Kim, S.H. Han, and J.S. Moodera, Appl. Phys. Lett. 98, 202504 (2011).CrossRefGoogle Scholar
  3. 3.
    H.C. Koo, H. Yi, J.-B. Ko, J. Chang, S.-H. Han, D. Jung, S.-G. Huh, and J. Eom, Appl. Phys. Lett. 90, 022101 (2007).CrossRefGoogle Scholar
  4. 4.
    T. Akazaki, K. Arai, T. Enoki, and Y. Ishii, IEEE Electron. Dev. Lett. 13, 325 (1992).CrossRefGoogle Scholar
  5. 5.
    A. Ohtomo and H.Y. Hwang, Nature 427, 423 (2004).CrossRefGoogle Scholar
  6. 6.
    S. Thiel, G. Hammerl, A. Schmehl, C.W. Schneider, and J. Mannhart, Science 313, 1942 (2006).CrossRefGoogle Scholar
  7. 7.
    G. Herranz, M. Basletic, M. Bibes, C. Carretero, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzic, J.M. Broto, A. Barthelemy, and A. Fert, Phys. Rev. Lett. 98, 216803 (2007).CrossRefGoogle Scholar
  8. 8.
    M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and Y. Dagan, Phys. Rev. Lett. 104, 126802 (2010).CrossRefGoogle Scholar
  9. 9.
    K.-H. Kim, H.-J. Kim, H.C. Koo, J. Chang, and S.-H. Han, Appl. Phys. Lett. 97, 012504 (2010).CrossRefGoogle Scholar
  10. 10.
    A.M. Gilbertson, M. Fearn, J.H. Jefferson, B.N. Murdin, P.D. Buckle, and L.F. Cohen, Phys. Rev. B 77, 165335 (2008).CrossRefGoogle Scholar
  11. 11.
    J.P. Heida, B.J. van Wees, J.J. Kuipers, T.M. Klapwijk, and G. Borghs, Phys. Rev. B 57, 11911 (1998).CrossRefGoogle Scholar
  12. 12.
    E. Lesne, Y. Fu, S. Oyarzun, J.C. Rojas-Sanchez, D.C. Vaz, H. Naganuma, G. Sicoli, J.P. Attane, M. Jamet, E. Jacquet, J.M. George, A. Barthelemy, H. Jaffres, A. Fert, M. Bibes, and L. Vila, Nat. Mater. 15, 1261 (2016).CrossRefGoogle Scholar
  13. 13.
    Q. Song, H. Zhang, T. Su, W. Yuan, Y. Chen, W. Xing, J. Shi, J. Sun, and W. Han, Sci. Adv. 3, e1602312 (2017).CrossRefGoogle Scholar
  14. 14.
    Y. Wang, R. Ramaswamy, M. Motapothula, K. Narayanapillai, D. Zhu, J. Yu, T. Venkatesan, and H. Yang, Nano Lett. 17, 7659 (2017).CrossRefGoogle Scholar
  15. 15.
    N. Reyren, M. Bibes, E. Lesne, J.M. George, C. Deranlot, S. Collin, A. Barthelemy, and H. Jaffres, Phys. Rev. Lett. 108, 186802 (2012).CrossRefGoogle Scholar
  16. 16.
    M.J. Jin, S.Y. Moon, J. Park, V. Modepalli, J. Jo, S.I. Kim, H.C. Koo, B.C. Min, H.W. Lee, S.H. Baek, and J.W. Yoo, Nano Lett. 17, 36 (2017).CrossRefGoogle Scholar
  17. 17.
    A.D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.M. Triscone, Nature 456, 624 (2008).CrossRefGoogle Scholar
  18. 18.
    H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).CrossRefGoogle Scholar
  19. 19.
    C.W. Bark, P. Sharma, Y. Wang, S.H. Baek, S. Lee, S. Ryu, C.M. Folkman, T.R. Paudel, A. Kumar, S.V. Kalinin, A. Sokolov, E.Y. Tsymbal, M.S. Rzchowski, A. Gruverman, and C.B. Eom, Nano Lett. 12, 1765 (2012).CrossRefGoogle Scholar
  20. 20.
    S.I. Kim, D.H. Kim, Y. Kim, S.Y. Moon, M.G. Kang, J.K. Choi, H.W. Jang, S.K. Kim, J.W. Choi, S.J. Yoon, H.J. Chang, C.Y. Kang, S. Lee, S.H. Hong, J.S. Kim, and S.H. Baek, Adv. Mater. 25, 4612 (2013).CrossRefGoogle Scholar
  21. 21.
    N. Reyren, S. Thiel, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.S. Ruetschi, D. Jaccard, M. Gabay, D.A. Muller, J.M. Triscone, and J. Mannhart, Science 317, 1196 (2007).CrossRefGoogle Scholar
  22. 22.
    A.D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J.M. Triscone, Phys. Rev. Lett. 104, 126803 (2010).CrossRefGoogle Scholar
  23. 23.
    A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J.C. Maan, W.G. Van der Wiel, G. Rijnders, D.H.A. Blank, and H. Hilgenkamp, Nat. Mater. 6, 493 (2007).CrossRefGoogle Scholar
  24. 24.
    Ariando, X. Wang, G. Baskaran, Z.Q. Liu, J. Huijben, J.B. Yi, A. Annadi, A. Roy Barman, A. Rusydi, S. Dhar, Y.P. Feng, J. Ding, H. Hilgenkamp, and T. Venkatesan, Nat. Commun. 2, 188 (2011).Google Scholar
  25. 25.
    B. Kalisky, J.A. Bert, B.B. Klopfer, C. Bell, H.K. Sato, M. Hosoda, Y. Hikita, H.Y. Hwang, and K.A. Moler, Nat. Commun. 3, 922 (2012).CrossRefGoogle Scholar
  26. 26.
    J.S. Lee, Y.W. Xie, H.K. Sato, C. Bell, Y. Hikita, H.Y. Hwang, and C.C. Kao, Nat. Mater. 12, 703 (2013).CrossRefGoogle Scholar
  27. 27.
    F. Bi, M.C. Huang, S. Ryu, H. Lee, C.W. Bark, C.B. Eom, P. Irvin, and J. Levy, Nat. Commun. 5, 5019 (2014).CrossRefGoogle Scholar
  28. 28.
    S. Banerjee, O. Erten, and M. Randeria, Nat. Phys. 9, 625 (2013).CrossRefGoogle Scholar
  29. 29.
    T.D.N. Ngo, J.W. Chang, K. Lee, S. Han, J.S. Lee, Y.H. Kim, M.H. Jung, Y.J. Doh, M.S. Choi, J. Song, and J. Kim, Nat. Commun. 6, 8035 (2015).CrossRefGoogle Scholar
  30. 30.
    D.A. Dikin, M. Mehta, C.W. Bark, C.M. Folkman, C.B. Eom, and V. Chandrasekhar, Phys. Rev. Lett. 107, 056802 (2011).CrossRefGoogle Scholar
  31. 31.
    L. Li, C. Richter, J. Mannhart, and R.C. Ashoori, Nat. Phys. 7, 762 (2011).CrossRefGoogle Scholar
  32. 32.
    J.A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H.Y. Hwang, and K.A. Moler, Nat. Phys. 7, 767–771 (2011).CrossRefGoogle Scholar
  33. 33.
    C. Kim and S.R. Park, Physics and High Technology 23, 25 (2014).CrossRefGoogle Scholar
  34. 34.
    A. Fete, S. Gariglio, A.D. Caviglia, J.M. Triscone, and M. Gabay, Phys. Rev. B 86, 201105(R) (2012).CrossRefGoogle Scholar
  35. 35.
    H.X. Liang, L. Cheng, L.M. Wei, Z.L. Luo, G.L. Yu, C.G. Zeng, and Z.Y. Zhang, Phys. Rev. B 92, 075309 (2015).CrossRefGoogle Scholar
  36. 36.
    K. Gopinadhan, A. Annadi, Y. Kim, A. Srivastava, B. Kumar, J.S. Chen, J.M.D. Coey, Ariando, and T. Venkatesan, Adv. Electron. Mater. 1, 1500114 (2015).Google Scholar
  37. 37.
    S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).CrossRefGoogle Scholar
  38. 38.
    H.C. Koo, J.H. Kwon, J. Eom, J. Chang, S.H. Han, and M. Johnson, Science 325, 1515 (2009).CrossRefGoogle Scholar
  39. 39.
    A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, and R.A. Duine, Nat. Mater. 14, 871 (2015).CrossRefGoogle Scholar
  40. 40.
    J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).CrossRefGoogle Scholar
  41. 41.
    H.C. Koo, J.H. Kwon, J. Eom, J. Chang, S.H. Han, and M. Johnson, Science 325, 1515 (2009).CrossRefGoogle Scholar
  42. 42.
    K. Takase, Y. Ashikawa, G. Zhang, K. Tateno, and S. Sasaki, Sci. Rep. 7, 930 (2017).CrossRefGoogle Scholar
  43. 43.
    K. Narayanapillai, K. Gopinadhan, X. Qiu, A. Annadi, Ariando, T. Venkatesan, and H. Yang, Appl. Phys. Lett. 105, 162405 (2014).Google Scholar
  44. 44.
    K. Narayanapillai, G. Go, R. Ramaswamy, K. Gopinadhan, D. Go, H.-W. Lee, T. Venkatesan, K.-J. Lee, and H. Yang, Phys. Rev. B 96, 064401 (2017).CrossRefGoogle Scholar
  45. 45.
    A. Joshua, J. Ruhman, S. Pecker, E. Altman, and S. Ilani, PNAS 110, 9633 (2013).CrossRefGoogle Scholar
  46. 46.
    K. Han, N. Palina, S.W. Zeng, Z. Huang, C.J. Li, W.X. Zhou, D.Y. Wan, L.C. Zhang, X. Chi, R. Guo, J.S. Chen, T. Venkatesan, A. Rusydi, and Ariando, Sci. Rep. 6, 25455 (2016).Google Scholar
  47. 47.
    M.M. Ramin Moayed, T. Bielewicz, M.S. Zollner, C. Herrmann, and C. Klinke, Nat. Commun. 8, 15721 (2017).CrossRefGoogle Scholar
  48. 48.
    M. BenShalom, C.W. Tai, Y. Lereah, M. Sachs, E. Levy, D. Rakhmilevitch, A. Palevski, and Y. Dagan, Phys. Rev. B 80, 140403(R) (2009).CrossRefGoogle Scholar
  49. 49.
    M. Basletic, J.L. Maurice, C. Carretero, G. Herranz, O. Copie, M. Bibes, E. Jacquet, K. Bouzehouane, S. Fusil, and A. Barthelemy, Nat. Mater. 7, 621 (2008).CrossRefGoogle Scholar
  50. 50.
    L.Q. Liu, C.F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, and R.A. Buhrman, Science 336, 555 (2012).CrossRefGoogle Scholar
  51. 51.
    J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, T. Suzuki, S. Mitani, and H. Ohno, Nat. Mater. 12, 240 (2013).CrossRefGoogle Scholar
  52. 52.
    Y. Kim, R.M. Lutchyn, and C. Nayak, Phys. Rev. B 87, 245121 (2013).CrossRefGoogle Scholar
  53. 53.
    G. Khalsa, B. Lee, and A.H. MacDonald, Phys. Rev. B 88, 041302(R) (2013).CrossRefGoogle Scholar
  54. 54.
    Z. Zhong, A. Tóth, and K. Held, Phys. Rev. B 87, 161102(R) (2013).CrossRefGoogle Scholar
  55. 55.
    S. Hurand, A. Jouan, C. Feuillet-Palma, G. Singh, J. Biscaras, E. Lesne, N. Reyren, A. Barthelemy, M. Bibes, J.E. Villegas, C. Ulysse, X. Lafosse, M. Pannetier-Lecoeur, S. Caprara, M. Grilli, J. Lesueur, and N. Bergeal, Sci. Rep. 5, 12751 (2015).CrossRefGoogle Scholar
  56. 56.
    D. Stornaiuolo, S. Gariglio, A. Fête, M. Gabay, D. Li, D. Massarotti, and J.M. Triscone, Phys. Rev. B 90, 235426 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
  2. 2.Center for Electronic MaterialsKorea Institute of Science and TechnologySeoulRepublic of Korea
  3. 3.Division of Nano and Information Technology, KIST SchoolKorea University of Science and TechnologySeoulRepublic of Korea

Personalised recommendations