Journal of Electronic Materials

, Volume 48, Issue 1, pp 142–151 | Cite as

Modeling and Experimental Verification of Intermetallic Compounds Grown by Electromigration and Thermomigration for Sn-0.7Cu Solders

  • Sung-Min Baek
  • Yujin Park
  • Cheolmin Oh
  • Eun-Joon Chun
  • Namhyun KangEmail author
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder


Printed circuit boards that use fine pitch technology have a greater risk of open-circuit failure, due to void formations caused by the growth of intermetallic compounds. This failure mode is reported to be a result of electromigration (EM) damage. Current stressing occurs when current flows in a solder bump, thereby producing EM. Joule heating is also a significant occurrence under current stressing conditions, and induces thermomigration (TM) in solder bumps during EM. This study investigated the intermetallic compound (IMC) growth kinetics for Sn-0.7Cu solders, modeled by EM, TM, and chemical diffusion. The modeling results concurred with the observed kinetics of IMC growth. Electromigration influenced the growth of IMCs most significantly for a current density of 10 kA/cm2. The effect of TM on the IMC growth had to be considered for a thermogradient of 870°C/cm. However, the effect of chemical diffusion was insignificant on IMC growth, specifically for a current density of 10 kA/cm2.


Electromigration thermomigration Sn-0.7Cu solder intermetallic compounds modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Research Foundation of Korea (NRF) Grant Funded by the Korea government (MSIT) through GCRC-SOP (Grant No. 2011-0030013).


  1. 1.
    E.C.C. Yeh, W.J. Choi, and K.N. Tu, Appl. Phys. Lett. 80, 580 (2002).CrossRefGoogle Scholar
  2. 2.
    S.W. Liang, Y.W. Chang, and C. Chen, Appl. Phys. Lett. 88, 172108 (2006).CrossRefGoogle Scholar
  3. 3.
    S.H. Chiu, T.L. Shao, and C. Chen, Appl. Phys. Lett. 88, 022110 (2006).CrossRefGoogle Scholar
  4. 4.
    R. Labie, P. Limaye, K.W. Lee, C.J. Berry, E. Beyne, and I.D. Wolf, in 3rd Electronics System Integration Technology Conference ESTC, pp. 1–5 (2010).Google Scholar
  5. 5.
    F. Ouyang, H. Hsu, Y. Su, and T. Chang, J. Appl. Phys. 112, 023505 (2012).CrossRefGoogle Scholar
  6. 6.
    B.H. Chao, X. Zhang, S. Chae, and P.S. Ho, Microelectron. Reliab. 49, 253 (2009).CrossRefGoogle Scholar
  7. 7.
    S. Chae, X. Zhang, K. Lu, H. Chao, P.S. Ho, M. Ding, P. Su, T. Uehling, and L.N. Ramanthan, J. Mater. Sci. - Mater. Electron. 18, 247 (2007).CrossRefGoogle Scholar
  8. 8.
    H. Gan and K.N. Tu, J. Appl. Phys. 97, 063514 (2005).CrossRefGoogle Scholar
  9. 9.
    S. Chae, B. Chao, X. Zhang, J. Im, and P.S. Ho, in 57th Electronic Components and Technology Conference, pp. 1442–1449 (2007).Google Scholar
  10. 10.
    W.K. Choi and H.M. Lee, J. Electron. Mater. 29, 1207 (2000).CrossRefGoogle Scholar
  11. 11.
    J. Yoon and S. Jung, J. Mater. Sci. 39, 4211 (2004).CrossRefGoogle Scholar
  12. 12.
    C.Y. Liu, L. Ke, Y.C. Chuang, and S.J. Wang, J. Appl. Phys. 100, 083702 (2006).CrossRefGoogle Scholar
  13. 13.
    L. Xu, J.H.L. Pang, K.H. Prakash, and T.H. Low, IEEE Trans. Compon. Packag. Technol. 28, 408 (2005).CrossRefGoogle Scholar
  14. 14.
    K. Yamanaka, Y. Tsukada, and K. Suganuma, Microelectron. Reliab. 47, 1280 (2007).CrossRefGoogle Scholar
  15. 15.
    C. Chen, H.M. Tong, and K.N. Tu, Annu. Rev. Mater. Res. 40, 531 (2010).CrossRefGoogle Scholar
  16. 16.
    L.S. Darken, Metall. Mater. Trans. B 41, 277 (2010).Google Scholar
  17. 17.
    P. Shewmon, Thermo- and electrotransport in solids (Warrendale: TMS, 1989) chapter 7.Google Scholar
  18. 18.
    N. Saunders and A.P. Miodownik, Binary Alloy Phase Diagram, ed. T.B. Massalski (Russell Township: ASM International, 1990), p. 1481.Google Scholar
  19. 19.
    B. Chao, S. Chae, X. Zhang, K. Lu, J. Im, and P.S. Ho, Acta Mater. 55, 2805 (2007).CrossRefGoogle Scholar
  20. 20.
    G.A. Sullivan, J. Phys. Chem. Solids 28, 347 (1967).CrossRefGoogle Scholar
  21. 21.
    A. Khosla and H.B. Huntington, J. Phys. Chem. Solids 36, 395 (1975).CrossRefGoogle Scholar
  22. 22.
    R. Grone, J. Phys. Chem. Solids 20, 88 (1961).CrossRefGoogle Scholar
  23. 23.
    M.Y. Hsieh and H.B. Huntington, J. Phys. Chem. Solids 39, 867 (1978).CrossRefGoogle Scholar
  24. 24.
    H.L. Chao, Ph.D. Thesis, The University of Texas at Austin, Texas (2009).Google Scholar
  25. 25.
    W. Hsu and F. Ouyang, Mater. Chem. Phys. 165, 66 (2015).CrossRefGoogle Scholar
  26. 26.
    H. Hsiao and C. Chen, Appl. Phys. Lett. 94, 092107 (2009).CrossRefGoogle Scholar
  27. 27.
    C. Wei, C.F. Chen, P.C. Liu, and C. Chen, J. Appl. Phys. 105, 023715 (2009).CrossRefGoogle Scholar
  28. 28.
    W. Seith and T. Heumann, Diffusion of Metals: Exchange Reactions (Berlin: Springer, 1962), p. 65.Google Scholar
  29. 29.
    K. Hoshino, Y. Iijima, K. Hirano, and T. Jpn, I. Met. 21, 674 (1980).Google Scholar
  30. 30.
    F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).CrossRefGoogle Scholar
  31. 31.
    P. Yang, C. Kuo, and C. Chen, JOM 60, 77 (2008).CrossRefGoogle Scholar
  32. 32.
    K. Lee, K. Kim, and K. Suganuma, J. Mater. Res. 26, 2624 (2011).CrossRefGoogle Scholar
  33. 33.
    Y. Kim, S. Nagao, T. Sugahara, K. Suganuma, M. Ueshima, and H. Albrecht, J. Mater. Sci. - Mater. Electron. 25, 3090 (2014).CrossRefGoogle Scholar
  34. 34.
    B. Chao, S. Chae, X. Zhang, K. Lu, M. Ding, J. Im, and P.S. Ho, J. Appl. Phys. 100, 084909 (2006).CrossRefGoogle Scholar
  35. 35.
    H. Ye, C. Basaran, and D. Hopkins, Appl. Phys. Lett. 82, 1045 (2003).CrossRefGoogle Scholar
  36. 36.
    S.H. Chiu, S.W. Liang, C. Chen, D.J. Yao, Y.C. Liu, K.H. Chen, and S.H. Lin, in 56th Electronic Components and Technology Conference, p. 4 (2006).Google Scholar
  37. 37.
    T. Chellaih, G. Kumar, and K.N. Prabhu, Mater. Des. 28, 1006 (2007).CrossRefGoogle Scholar
  38. 38.
    A.T. Huang, A.M. Gusak, and K.N. Tu, Appl. Phys. Lett. 88, 141911 (2006).CrossRefGoogle Scholar
  39. 39.
    L. Zhang, S. Ou, J. Huang, and K.N. Tu, Appl. Phys. Lett. 88, 012106 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Samsung Electro-MechanicsSeobuk-gu, Cheonan-siRepublic of Korea
  2. 2.Department of Materials Science and EngineeringPusan National UniversityBusanRepublic of Korea
  3. 3.Korea Electronics Technology InstituteSeongnamRepublic of Korea
  4. 4.Busan Machinery Research CenterKorea Institute of Machinery and MaterialsBusanRepublic of Korea

Personalised recommendations