Journal of Electronic Materials

, Volume 48, Issue 2, pp 780–786 | Cite as

A Method of Combining the Increased Density of Acceptors with Restrained Density of Oxygen Vacancies to Fabricate p-Type Single-Crystalline ZnO Films

  • Zhiyuan Zhang
  • Jingyun Huang
  • Shanshan Chen
  • Xinhua Pan
  • Lingxiang Chen
  • Zhizhen Ye


Single-crystalline ZnO films with good crystal quality were grown by plasma-assisted molecular beam epitaxy (MBE) technique on c-plane sapphire substrates and implanted with fixed energy of 180-keV P and 100-keV O ions at 460°C. The implanted single-crystalline ZnO films exhibit p-Type characteristics with hole concentration in the range of 5.3 × 1017–1.5 × 1018 cm−3, hole mobilities between 1.4 cm2V−1 s−1 and 2.1 cm2V−1 s−1, and resistivities in the range of 0.672–1.832 Ωcm, as confirmed by Hall-effect measurements. The x-ray diffraction pattern of the implanted single-crystalline ZnO films exhibits (002) orientation (c-plane), with no other secondary phase appearing after ion implantation and dynamic annealing. It is deduced from x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy results that P ions were effectively implanted and formed acceptor complex PZn–2VZn, acting predominantly in all acceptors and achieving the goal of increasing the density of acceptors. Raman spectra and XPS results reflect that the enhanced solubility and stability of acceptor complexes in implanted single-crystalline ZnO films are related to the reduction of the concentration of oxygen vacancies by O ion implantation, achieving the goal of restraining the density of oxygen vacancies. It is concluded that the method of combining the increased density of acceptors and the restrained density of oxygen vacancies is meaningful and feasible, and afforded excellent p-type characteristics.


Excellent p-type characteristics acceptor native donor oxygen vacancy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by Zhejiang Provincial Public Technology Research (LGG18E020001) and the Fundamental Research Funds for the Central Universities.


  1. 1.
    D.-C. Perng, M.-H. Hong, K.-H. Chen, and K.-H. Chen, J. Alloys Compd. 695, 549 (2017).CrossRefGoogle Scholar
  2. 2.
    M. Kumar, S. Otari, H. Jeong, and D. Lee, J. Alloys Compd. 725, 1115 (2017).CrossRefGoogle Scholar
  3. 3.
    S.-H. Kim, G.-I. Shim, and S.-Y. Choi, J. Alloys Compd. 698, 77 (2017).CrossRefGoogle Scholar
  4. 4.
    C.L. Jia, K.M. Wang, X.L. Wang, X.J. Zhang, and F. Lu, Opt. Express 13, 5093 (2005).CrossRefGoogle Scholar
  5. 5.
    Z.Y. Zhang, J.Y. Huang, S.S. Chen, X.H. Pan, L.X. Chen, and Z.Z. Ye, J. Cryst. Growth 483, 236 (2018).CrossRefGoogle Scholar
  6. 6.
    W. Yang, S.S. Hullavarad, B. Nagaraj, I. Takeuchi, R.P. Sharma, T. Venkatesan, R.D. Vispute, and H. Shen, Appl. Phys. Lett. 82, 3424 (2003).CrossRefGoogle Scholar
  7. 7.
    S.O. Kucheyev, C. Jagadish, J.S. Williams, P.N.K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, J. Appl. Phys. 93, 2972 (2003).CrossRefGoogle Scholar
  8. 8.
    Y.J. Zeng, Z.Z. Ye, and W.Z. Xue, Appl. Phys. Lett. 88, 062107 (2006).CrossRefGoogle Scholar
  9. 9.
    L.Q. Zhang, Y.Z. Zhang, Z.Z. Ye, S.S. Lin, B. Lu, H.P. He, L.X. Chen, J.G. Lu, J. Jiang, K.W. Wu, J.Y. Huang, and L.P. Zhu, Appl. Phys. A 106, 191 (2012).CrossRefGoogle Scholar
  10. 10.
    B.W.-C. Au and K.-Y. Chan, Appl. Phys. A 123, 485 (2007).CrossRefGoogle Scholar
  11. 11.
    J. Huang, L.J. Wang, R. Xu, K. Tang, W.M. Shi, and Y.B. Xia, Semicond. Sci. Technol. 24, 075025 (2009).CrossRefGoogle Scholar
  12. 12.
    G.-T. Du, W. Zhao, and G.-G. Wu, Appl. Phys. Lett. 101, 053503 (2012).CrossRefGoogle Scholar
  13. 13.
    Z. Shi, Y. Zhang, and B. Wu, Appl. Phys. Lett. 102, 161101 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Huang, Z. Li, S. Chu, and J. Liu, Appl. Phys. Lett. 23, 232102 (2012).CrossRefGoogle Scholar
  15. 15.
    L.J. Mandalapu, Z. Yang, F.X. Xiu, D.T. Zhao, and J.L. Liu, Appl. Phys. Lett. 88, 092103 (2006).CrossRefGoogle Scholar
  16. 16.
    T.M. Barnes, K. Olson, and C.A. Wolden, Appl. Phys. Lett. 86, 112112 (2005).CrossRefGoogle Scholar
  17. 17.
    L.G. Wang and A. Zunger, Phys. Rev. Lett. 90, 256401 (2003).CrossRefGoogle Scholar
  18. 18.
    L. Gong, Z.Z. Ye, and J.G. Lu, Vacuum 85, 365 (2010).CrossRefGoogle Scholar
  19. 19.
    D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).CrossRefGoogle Scholar
  20. 20.
    M.S. Oh and R. Navamathavan, RSC Adv. 7, 16119 (2017).CrossRefGoogle Scholar
  21. 21.
    P. Sharma, R. Bhardwaj, R. Singh, S. Kumar, and S. Mukherjee, Appl. Phys. Lett. 111, 091604 (2017).CrossRefGoogle Scholar
  22. 22.
    P. Sharma, R. Bhardwaj, A. Kumar, and S. Mukherjee, J. Phys. D Appl. Phys. 51, 015103 (2018).CrossRefGoogle Scholar
  23. 23.
    R. Bhardwaj, P. Sharma, R. Singh, S. Mukherjee, and I.E.E.E. Photo, Technol. Lett. 29, 1215 (2017).CrossRefGoogle Scholar
  24. 24.
    J.S. Williams, Mater. Sci. Eng. A 253, 8 (1998).CrossRefGoogle Scholar
  25. 25.
    D.G. Armour, Vacuum 37, 423 (1987).CrossRefGoogle Scholar
  26. 26.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).CrossRefGoogle Scholar
  27. 27.
    M.A. Myers, M.T. Myers, M.J. General, J.H. Lee, L. Shao, and H. Wang, Appl. Phys. Lett. 101, 112201 (2012).CrossRefGoogle Scholar
  28. 28.
    C.O. Kim, D.H. Shin, S. Kim, S. Choi, and K. Belay, J. Appl. Phys. 110, 103708 (2011).CrossRefGoogle Scholar
  29. 29.
    T. Prasada Rao and M.C. Santhosh Kumar, J. Alloy. Compd. 509, 8676 (2011).CrossRefGoogle Scholar
  30. 30.
    J.D. Pedersen, H.J. Esposito, and K.S. The, Nanoscale Res. Lett. 6, 568 (2011).CrossRefGoogle Scholar
  31. 31.
    N. Fujimura, T. Nishihara, S. Goto, J.F. Xu, and T. Ito, J. Cryst. Growth 130, 269 (1993).CrossRefGoogle Scholar
  32. 32.
    M.-J. Kim, J.-T. Yeon, K. Hong, S.-I. Lee, N.-S. Choi, and S.-S. Kim, Bull. Korean Chem. Soc. 34, 2029 (2013).CrossRefGoogle Scholar
  33. 33.
    M.A. Carrillo Solano, M. Dussauze, P. Vinatier, L. Croguennec, E.I. Kamitsos, R. Hausbrand, and W. Jaegermann, Ionics 22, 471 (2016).CrossRefGoogle Scholar
  34. 34.
    W.-J. Lee, J. Kang, and K.J. Chang, Phys. Rev. B 73, 024117 (2006).CrossRefGoogle Scholar
  35. 35.
    M. Yuan, H. Yuan, Q. Jia, Y. Chen, X. Jiang, and H.-H. Wang, J. Phys. D Appl. Phys. 45, 085103 (2012).CrossRefGoogle Scholar
  36. 36.
    J.C.C. Fan and J.B. Goodenough, J. Appl. Phys. 48, 3524 (1977).CrossRefGoogle Scholar
  37. 37.
    L. Jing, Z. Xu, X. Sun, J. Shang, and W. Cai, Appl. Surf. Sci. 180, 308 (2001).CrossRefGoogle Scholar
  38. 38.
    F. Li, X.C. Liu, R.W. Zhou, H.M. Chen, S.Y. Zhuo, and E.W. Shi, J. Appl. Phys. 116, 243910 (2014).CrossRefGoogle Scholar
  39. 39.
    C.J. Youn, T.S. Jeong, M.S. Han, and J.H. Kim, J. Cryst. Growth 261, 526 (2004).CrossRefGoogle Scholar
  40. 40.
    C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003).CrossRefGoogle Scholar
  41. 41.
    Z.Z. Zhi, Y.C. Liu, B.S. Li, X.T. Zhang, Y.M. Lu, D.Z. Shen, and X.W. Fan, J. Phys. D. 36, 719 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations