Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 679–683 | Cite as

Transport Properties in InAs Thin Films with Different Degrees of Disorder Near the Metal–Insulator Transition

  • Yanping YaoEmail author
  • Baoxue Bo
  • Chunling Liu
Article
  • 9 Downloads

Abstract

Transport properties of Indium Arsenide (InAs) films deposited at different working pressures are investigated in the temperature interval of T ∼ 2–250 K. Electrical transport of InAs films is related to the degree of disorder, which increases as working pressure increases. Activated conductivity models satisfactorily describe conduction in the localized band-tails at high temperatures, while conductivity shows metallic characteristic at low temperatures for μc-InAs samples. The critical conductivity exponent of μc-InAs is close to 1, which indicates that μc-InAs samples exhibit a close proximity to the metal–insulator transition. The product of aB and n1/3 for samples S1 and S2 is 0.236 and 0.207, respectively, which is roughly consistent with the Mott criterion. But for α-InAs samples in the high temperature region, electron transport is described by conduction in extended states and in localized states near the Fermi level. Furthermore, a crossover from Mott variable range hopping (VRH) to the Efros–Shklovskii VRH mechanism is observed in α-InAs thin films at low temperatures.

Keywords

InAs thin films MIT transport properties Mott VRH ES VRH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 61356002).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    A.K. Al-Mousoi, M.K.A. Mohammed, and H.A. Khalaf, Optik 127, 5834 (2016).CrossRefGoogle Scholar
  2. 2.
    W.K. Metzger, M.W. Wanlass, L.M. Gedvilas, J.C. Verley, J.J. Carapella, and R.K. Ahrenkiel, J. Appl. Phys. 92, 3524 (2002).CrossRefGoogle Scholar
  3. 3.
    M. Malmkvist, E. Lefebvre, M. Borg, L. Desplanqueet, X. Wallart, G. Dambrine, S. Bollaert, and J. Grahn, IEEE T. Microw. Theory 56, 2685 (2008).CrossRefGoogle Scholar
  4. 4.
    J.R. Söderström, T.C. Mcgill, E.R. Brown, C.D. Parker, L.J. Mahoney, and J.Y. Yao, Appl. Phys. Lett. 58, 275 (1991).CrossRefGoogle Scholar
  5. 5.
    S. Maimon, E. Finkman, G. Bahir, S.E. Schacham, J.M. Garcia, and P.M. Petroff, Appl. Phys. Lett. 73, 2003 (1998).CrossRefGoogle Scholar
  6. 6.
    G.T. Liu, A. Stintz, H. Li, and K.J. Malloy, Electron. Lett. 35, 1163 (1999).CrossRefGoogle Scholar
  7. 7.
    C.G. Bailey, D.V. Forbes, R.P. Raffaelle, and S.M. Hubbard, Appl. Phys. Lett. 98, 163105 (2011).CrossRefGoogle Scholar
  8. 8.
    O. Yilmazoglu, M. Brandt, J. Sigmund, E. Genc, and H.L. Hartnagel, Sensors Actuat. A Phys. 94, 59 (2001).CrossRefGoogle Scholar
  9. 9.
    V.P. Kunets, W. Hoerstel, H. Kostial, H. Kissel, U. Muller, G.G. Tarasov, Y.I. Mazur, Z.Y. Zhuchenko, and W.T. Masselink, Sensors Actuat. A Phys. 101, 62 (2002).CrossRefGoogle Scholar
  10. 10.
    A. Okamoto, H. Geka, I. Shibasaki, and K. Yoshida, J. Cryst. Growth 278, 604 (2005).CrossRefGoogle Scholar
  11. 11.
    S. Shigehiko, U. Shinya, I. Yutaro, M. Toshihiko, I. Masataka, T. Kei, and T. Masayoshi, J. Infrared Millim. Terahertz Waves 32, 646 (2011).CrossRefGoogle Scholar
  12. 12.
    Y. Yao, C. Liu, H. Qi, X. Chang, C. Wang, and G. Wang, Curr. Appl. Phys. 11, 620 (2011).CrossRefGoogle Scholar
  13. 13.
    Y. Yao, B. Bo, C. Liu, and X. Chang, Sens. Transducers 176, 93 (2014).Google Scholar
  14. 14.
    C.O. Yoon, M. Reghu, D. Moses, and A.J. Heeger, Phys. Rev. B 50, 8138 (1994).CrossRefGoogle Scholar
  15. 15.
    A.K. Sharma and P.J. Reddy, J. Phys. B 34, 705 (1984).Google Scholar
  16. 16.
    A.K. Sharma and P.J. Reddy, J. Non Cryst. Solids 41, 13 (1980).CrossRefGoogle Scholar
  17. 17.
    W.L. Mcmillan, Phys. Rev. B 24, 2739 (1981).CrossRefGoogle Scholar
  18. 18.
    B.L. Al’Tshuler and A.G. Aronov, J. Exp. Theor. Phy. 50, 968 (1979).Google Scholar
  19. 19.
    N.F. Mott and M. Kaveh, Adv. Phys. 34, 329 (1985).CrossRefGoogle Scholar
  20. 20.
    P. Dai, Y. Zhang, and M.P. Sarachik, Phys. Rev. B 45, 3984 (1992).CrossRefGoogle Scholar
  21. 21.
    D. Belitz and K.I. Wysokinski, Phys. Rev. B 36, 9333 (1987).CrossRefGoogle Scholar
  22. 22.
    M.J. Hirsch and D.F. Holcomb, Disordered Semiconductors, ed. M.A. Kastner, G.A. Thomas, and S.R. Ovshinsky (US: Springer, 1987), p. p45.CrossRefGoogle Scholar
  23. 23.
    N.F. Mott, Proc. Phys. Soc. A 62, 456 (1949).CrossRefGoogle Scholar
  24. 24.
    D. Lide, eds., In the CRC Handbook of Chemistry and Physics (Boca Raton: CRC Press, 1993), pp. 12–80.Google Scholar
  25. 25.
    R.F. Milligan and G.A. Thomas, Annu. Rev. Phys. Chem. 36, 139 (1985).CrossRefGoogle Scholar
  26. 26.
    B.I. Shklovskii, B. Shapiro, B.R. Sears, P. Lambrianides, and H.B. Shore, Phys. Rev. B 47, 11487 (1993).CrossRefGoogle Scholar
  27. 27.
    N.F. Mott, J. Non Cryst. Solids 1, 1 (1968).CrossRefGoogle Scholar
  28. 28.
    A.L. Efros and B.I. Shklovskii, J. Phys. C Solid State Phys. 8, L239 (1975).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.College of Information and TechnologyJilin Normal UniversitySipingChina
  2. 2.State Key Lab on High Power Laser DiodesChangchun University of Science and TechnologyChangchunChina

Personalised recommendations