Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 705–715 | Cite as

Electronic, Optical and Elastic Properties of Cu2CdGeSe4: A First-Principles Study

  • Tuan V. VuEmail author
  • A. A. Lavrentyev
  • B. V. Gabrelian
  • Khang D. Pham
  • Chuong V. Nguyen
  • Khanh C. Tran
  • Hai L. Luong
  • M. Batouche
  • O. V. Parasyuk
  • O. Y. Khyzhun
Article
  • 33 Downloads

Abstract

Using the augmented plane wave + local orbitals method with different approximation functionals, we investigate systematically the electronic, optical and elastic properties of stannite-type Cu2CdGeSe4. Among different approximation functionals, the modified Becke–Johnson (mBJ) potential with Hubbard-corrected parameter U (mBJ + U) gives the most reliable results on the electronic properties of Cu2CdGeSe4 in comparison with the experimental data. Elastic modulus, elastic constants and the Poisson’s ratio of Cu2CdGeSe4 were calculated using the Elastic software package. Optical properties such as wide spectrum of absorbed photon energy, namely 1.3–27.2 eV, high absorption coefficient (above 104 cm−1) and optical anisotropy suggest the application of Cu2CdGeSe4 in solar cells.

Keywords

Optical materials ab initio calculations electronic structure optical properties elastic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Parthe, K. Yvon, and R.H. Deitch, Acta Crystallogr. B 25, 1164 (1969).CrossRefGoogle Scholar
  2. 2.
    L. Guen, W.S. Glaunsinger, and A. Wold, Mater. Res. Bull. 14, 463 (1979).CrossRefGoogle Scholar
  3. 3.
    H. Matsushita, T. Maeda, A. Katsui, and T. Takizawa, J. Cryst. Growth 208, 416 (2000).CrossRefGoogle Scholar
  4. 4.
    O.V. Parasyuk, L.V. Piskach, Y.E. Romanyuk, I.D. Olekseyuk, V.I. Zaremba, and V.I. Pekhnyo, J. Alloys Compd. 397, 85 (2005).CrossRefGoogle Scholar
  5. 5.
    G.-Q. Yao, H.-S. Shen, E.D. Honig, R. Kershaw, K. Dwight, and A. Wold, Solid State Ionics 24, 249 (1987).CrossRefGoogle Scholar
  6. 6.
    C. Wang, S. Chen, J.-H. Yang, L. Lang, H.-J. Xiang, X.-G. Gong, A. Walsh, and S.-H. Wei, Chem. Mater. 26, 3411 (2014).CrossRefGoogle Scholar
  7. 7.
    L.D. Gulay, Y.E. Romanyuk, and O.V. Parasyuk, J. Alloys Compd. 347, 193 (2002).CrossRefGoogle Scholar
  8. 8.
    D. Li, F. Ling, Z. Zhu, and X. Zhang, Phys. B 406, 3299 (2011).CrossRefGoogle Scholar
  9. 9.
    S. Mkrtchyan, K. Dovletov, E.G. Zhukov, A. Melikdzhanyan, and S. Nuryev, Neorg. Mater. 24, 1094 (1988).Google Scholar
  10. 10.
    M.G. Brik, O.V. Parasyuk, G.L. Myronchuk, and I.V. Kityk, Mater. Chem. Phys. 147, 254 (2014).CrossRefGoogle Scholar
  11. 11.
    V.A. Ocheretova, O.V. Parasyuk, A.O. Fedorchuk, and O.Y. Khyzhun, Mater. Chem. Phys. 160, 345 (2015).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, Y. Wang, J. Zhang, L. Xi, P. Zhang, and W. Zhang, J. Chem. Phys. 144, 194706 (2016).CrossRefGoogle Scholar
  13. 13.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, and L.D. Marks, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Propertie (Wien: Techn. Universitat, 2018). ISBN 3-9501031-1-2.Google Scholar
  14. 14.
    J.P. Perdew and W. Yue, Phys. Rev. B 33, 8800 (1986).CrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  16. 16.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).CrossRefGoogle Scholar
  17. 17.
    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).CrossRefGoogle Scholar
  18. 18.
    D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 85, 155109 (2012).CrossRefGoogle Scholar
  19. 19.
    F. Tran and P. Blaha, Phys. Rev. B 83, 235118 (2011).CrossRefGoogle Scholar
  20. 20.
    V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).CrossRefGoogle Scholar
  21. 21.
    P. Novak, F. Boucher, P. Gressier, P. Blaha, and K. Schwarz, Phys. Rev. B 63, 235114 (2001).CrossRefGoogle Scholar
  22. 22.
    P.E. Blochl, O. Jepsen, and O.K. Andersen, Phys. Rev. B 49, 16223 (1994).CrossRefGoogle Scholar
  23. 23.
    A. Reshak, K. Nouneh, I. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, Int. J. Electrochem. Sci. 9, 955 (2014).Google Scholar
  24. 24.
    T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, O.V. Parasyuk, V.A. Ocheretova, and O.Y. Khyzhun, J. Alloys Compd. 732, 372 (2018).CrossRefGoogle Scholar
  25. 25.
    R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, and C. Draxl, Comput. Phys. Comm. 184, 1861 (2013).CrossRefGoogle Scholar
  26. 26.
    R. Hill, Proc. Phys. Soc. A 65, 349 (1952).CrossRefGoogle Scholar
  27. 27.
    R. Hill, J. Mech. Phys. Solids 11, 357 (1963).CrossRefGoogle Scholar
  28. 28.
    J. Heyd, J.E. Peralta, G.E. Scuseria, and R.L. Martin, J. Chem. Phys. 123, 174101 (2005).CrossRefGoogle Scholar
  29. 29.
    A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, P.N. Shkumat, V.A. Ocheretova, O.V. Parasyuk, and O.Y. Khyzhun, Opt. Mater. 47, 435 (2015).CrossRefGoogle Scholar
  30. 30.
    T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, V.A. Ocheretova, O.V. Parasyuk, and O.Y. Khyzhun, Mater. Chem. Phys. 208, 268 (2018).CrossRefGoogle Scholar
  31. 31.
    A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, L.N. Ananchenko, L.I. Isaenko, A.P. Yelisseyev, and O.Y. Khyzhun, Opt. Mater. 66, 149 (2017).CrossRefGoogle Scholar
  32. 32.
    T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, O.V. Parasyuk, and O.Y. Khyzhun, Mater. Chem. Phys. 219, 162 (2018).CrossRefGoogle Scholar
  33. 33.
    B.V. Gabrelian, A.A. Lavrentyev, T.V. Vu, O.V. Parasyuk, and O.Y. Khyzhun, Opt. Mater. 75, 538 (2018).CrossRefGoogle Scholar
  34. 34.
    T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, O.V. Parasyuk, and O.Y. Khyzhun, J. Electron. Mater. 47, 5525 (2018).CrossRefGoogle Scholar
  35. 35.
    A.A. Lavrentyev, B.V. Gabrelian, T.V. Vu, P.N. Shkumat, P.M. Fochuk, O.V. Parasyuk, I.V. Kityk, I.V. Luzhnyi, O.Y. Khyzhun, and M. Piasecki, Inorg. Chem. 55, 10547 (2016).CrossRefGoogle Scholar
  36. 36.
    A.H. Reshak, Appl. Catal. B 225, 273 (2018).CrossRefGoogle Scholar
  37. 37.
    D.P. Rai, Sandeep, A. Shankar, R. Khenata, A.H. Reshak, C.E. Ekuma, R.K. Thapa, and S.-H. Ke, AIP Adv. 7, 045118 (2017).CrossRefGoogle Scholar
  38. 38.
    R. Jaradat, M. Abu-Jafar, I. Abdelraziq, S.B. Omran, D. Dahliah, and R. Khenata, Mater. Chem. Phys. 208, 132 (2018).CrossRefGoogle Scholar
  39. 39.
    S.F. Solodovnikov, V.V. Atuchin, Z.A. Solodovnikova, O.Y. Khyzhun, M.I. Danylenko, D.P. Pishchur, P.E. Plyusnin, A.M. Pugachev, T.A. Gavrilova, A.P. Yelisseyev, A.H. Reshak, Z.A. Alahmed, and N.F. Habubi, Inorg. Chem. 56, 3276 (2017).CrossRefGoogle Scholar
  40. 40.
    Sandeep, D.P. Rai, A. Shankar, M.P. Ghimire, R. Khenata, S. Bin Omran, S.V. Syrotyuk, and R.K. Thapa, Mater. Chem. Phys. 192, 282 (2017).CrossRefGoogle Scholar
  41. 41.
    G. Boyd, H. Kasper, and J. McFee, IEEE J. Quantum Electron. 7, 563 (1971).CrossRefGoogle Scholar
  42. 42.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57, 1505 (1998).CrossRefGoogle Scholar
  43. 43.
    A. Bouhemadou and R. Khenata, Comput. Mater. Sci. 39, 803 (2007).CrossRefGoogle Scholar
  44. 44.
    S.F. Pugh, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45, 823 (1954).CrossRefGoogle Scholar
  45. 45.
    D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).CrossRefGoogle Scholar
  46. 46.
    I. Frantsevich, F. Voronov, and S. Bakuta, Elastic Constants and Moduli of Elasticity of Metals and Non-metals (Kyiv: Naukova Dumka, 1982).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Tuan V. Vu
    • 1
    • 2
    Email author
  • A. A. Lavrentyev
    • 3
  • B. V. Gabrelian
    • 4
  • Khang D. Pham
    • 1
    • 2
  • Chuong V. Nguyen
    • 5
  • Khanh C. Tran
    • 6
  • Hai L. Luong
    • 7
  • M. Batouche
    • 8
  • O. V. Parasyuk
    • 9
  • O. Y. Khyzhun
    • 10
  1. 1.Division of Computational Physics, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Electrical & Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of Electrical Engineering and ElectronicsDon State Technical UniversityRostov-on-DonRussian Federation
  4. 4.Department of Computational Technique and Automated System SoftwareDon State Technical UniversityRostov-on-DonRussian Federation
  5. 5.Department of Materials Science and EngineeringLe Quy Don Technical UniversityHanoiVietnam
  6. 6.Faculty of Materials Science and TechnologyUniversity of Science, Vietnam National University Ho Chi Minh CityHo Chi Minh CityVietnam
  7. 7.Department of PhysicsHo Chi Minh City University of EducationHo Chi Minh CityVietnam
  8. 8.Laboratoire de Physique Quantique et de Modélisation MathématiqueUniversité de MascaraMascaraAlgeria
  9. 9.Department of Inorganic and Physical ChemistryLesya Ukrainka Eastern European National UniversityLutskUkraine
  10. 10.Frantsevych Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations