Advertisement

Fabrication of Both TiO2 Nanostructures and Cysteine-Modified AAO Membranes and Their Application in Chiral Selective Transport of Proteins

  • Junhan Kong
  • Yu Mu
  • Yehan Xiong
  • Mingyan Zheng
  • Yongqian Wang
Article
  • 5 Downloads

Abstract

Chirality is a widespread phenomenon in nature, which plays an essential role in the metabolism of organisms. It is highly associated with a lot of significant biological processes, such as transport and translocation of proteins. Herein, we reported a chiral anodic aluminum oxide (AAO) nanochannel modified with both titanium dioxide (TiO2) nanostructures and cysteine (Cys) enantiomers and explored the chirality response on bovine serum albumin (BSA) transport. The results showed that BSA was preferentially transported through the nanochannel modified with l-Cys due to chiral interaction, which indicated that chirality would influence the transport process of proteins strongly. TiO2 nanostructures, which were anchored on the wall of a nanochannel, improved the sensitivity of the selective transport process of BSA. Moreover, we found that the effect of TiO2 nanostructure modification was more stable and excellent when the pore diameter of AAO membrane was 40–70 nm. This study provided a platform for the research of chiral selective transport of proteins, and introduced metal oxide nanostructures into a biomimetic nanochannel as well.

Keywords

Chirality protein transport cysteine BSA TiO2 nanostructures AAO membrane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bradshaw, J. Claridge, E. Cussen, T. Prior, and M. Rosseinsky, Acc. Chem. Res. 36, 273 (2005).CrossRefGoogle Scholar
  2. 2.
    Y. Tee, T. Shemesh, V. Thiagarajan, R. Hariadi, K. Anderson, C. Page, N. Volkmann, D. Hanein, S. Sivaramakrishnan, M. Kozlov, and A. Bershadsky, Nat. Cell Biol. 17, 445 (2015).CrossRefGoogle Scholar
  3. 3.
    T. Zhang, M. Mahdy, Y. Liu, J. Teng, C. Lim, Z. Wang, and C. Qiu, ACS Nano 11, 4292 (2017).CrossRefGoogle Scholar
  4. 4.
    M. Rout, J. Aitchison, A. Suprapto, K. Hjertaas, Y. Zhao, and B. Chait, J. Cell Biol. 148, 635 (2000).CrossRefGoogle Scholar
  5. 5.
    K. Knockenhauer and T. Schwartz, Cell 164, 1162 (2016).CrossRefGoogle Scholar
  6. 6.
    G. Procaccini, M. Ruocco, L. Marín-Guirao, E. Dattolo, C. Brunet, D. D’Esposito, C. Lauritano, S. Mazzuca, I. Serra, L. Bernardo, and A. Piro, Sci. Rep. 7, 42890 (2017).CrossRefGoogle Scholar
  7. 7.
    A. Goering, J. Li, R. McClure, R. Thomson, M. Jewett, and N. Kelleher, ACS Synth. Biol. 6, 39 (2016).CrossRefGoogle Scholar
  8. 8.
    L. Hicke and R. Dunn, Annu. Rev. Cell Dev. Biol. 19, 141 (2003).CrossRefGoogle Scholar
  9. 9.
    C. Zurzolo and K. Simons, Biochim. Biophys. Acta 1858, 632 (2016).CrossRefGoogle Scholar
  10. 10.
    M. Beck and E. Hurt, Nat. Rev. Mol. Cell Biol. 18, 73 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Knutson, J. Biol. Chem. 292, 12735 (2017).CrossRefGoogle Scholar
  12. 12.
    X. Hou, F. Yang, L. Li, Y. Song, L. Jiang, and D. Zhu, J. Am. Chem. Soc. 13, 11736 (2010).CrossRefGoogle Scholar
  13. 13.
    Z. Fan, J. Ma, Y. Sun, I. Boussouar, D. Tian, H. Li, and L. Jiang, Chem. Sci. 7, 3227 (2016).CrossRefGoogle Scholar
  14. 14.
    X. Kai, L. Chen, Z. Zhang, G. Xie, P. Li, X. Kong, L. Wen, and L. Jiang, Angew. Chem. 56, 8168 (2017).CrossRefGoogle Scholar
  15. 15.
    Y. Sun, J. Ma, F. Zhang, F. Zhu, Y. Mei, L. Liu, D. Tian, and H. Li, Nat. Commun. 8, 260 (2017).CrossRefGoogle Scholar
  16. 16.
    J. Lacroix, S. Pélofy, C. Blatché, M. Pillaire, S. Huet, C. Chapuis, J. Hoffmann, and A. Bancaud, Small 12, 5963 (2016).CrossRefGoogle Scholar
  17. 17.
    Y. Kobayashi, Y. Horie, K. Honjo, T. Uemura, and S. Kitagawa, Chem. Commun. 52, 5156 (2016).CrossRefGoogle Scholar
  18. 18.
    Z. Sun, C. Han, L. Wen, D. Tian, H. Li, and L. Jiang, Chem. Commun. 48, 3282 (2012).CrossRefGoogle Scholar
  19. 19.
    Z. Milne, L. Yeh, T. Chou, and S. Qian, J. Phys. Chem. C 118, 19806 (2014).CrossRefGoogle Scholar
  20. 20.
    X. Hou, W. Guo, and L. Jiang, Chem. Soc. Rev. 40, 2385 (2011).CrossRefGoogle Scholar
  21. 21.
    S. Brewer, W. Glomm, M. Johnson, M. Knag, and S. Franzen, Langmuir 21, 9303 (2005).CrossRefGoogle Scholar
  22. 22.
    P. Yadav, M. Martinov, V. Vitvitsky, J. Seravalli, R. Wedmann, M. Filipovic, and R. Banerjee, J. Am. Chem. Soc. 138, 289 (2016).CrossRefGoogle Scholar
  23. 23.
    Y. Luo, L. Zhang, W. Liu, Y. Yu, and Y. Tian, Angew. Chem. Int. Ed. 127, 14259 (2015).CrossRefGoogle Scholar
  24. 24.
    F. Zhang, Y. Sun, D. Tian, and H. Li, Angew. Chem. Int. Ed. 56, 7186 (2017).CrossRefGoogle Scholar
  25. 25.
    A. von Appen, J. Kosinski, L. Sparks, A. Ori, A. DiGuilio, B. Vollmer, M. Mackmull, N. Banterle, L. Parca, P. Kastritis, and K. Buczak, Nature 526, 140 (2015).CrossRefGoogle Scholar
  26. 26.
    X. Lin, Z. Wei, and M. Wan, J. Colloid Interfaces Sci. 341, 1 (2010).CrossRefGoogle Scholar
  27. 27.
    C. Zhu, G. Yang, H. Li, D. Du, and Y. Lin, Anal. Chem. 87, 230 (2015).CrossRefGoogle Scholar
  28. 28.
    B. Špačková, P. Wrobel, M. Bocková, and J. Homola, P. IEEE 104, 2380 (2016).CrossRefGoogle Scholar
  29. 29.
    L. Guo, G. Chen, and D. Kim, Anal. Chem. 82, 5147 (2010).CrossRefGoogle Scholar
  30. 30.
    H. Mitomo, K. Horie, Y. Matsuo, K. Niikura, T. Tani, M. Naya, and K. Ijiro, Adv. Opt. Mater. 4, 259 (2016).CrossRefGoogle Scholar
  31. 31.
    X. Ren, X. Qi, Y. Shen, S. Xiao, G. Xu, Z. Zhang, Z. Huang, and J. Zhong, J. Phys. D 49, 315304 (2016).CrossRefGoogle Scholar
  32. 32.
    Y. Shen, X. Ren, X. Qi, J. Zhou, Z. Huang, and J. Zhong, J. Electrochem. Soc. 163, H1087 (2016).CrossRefGoogle Scholar
  33. 33.
    L. Ren, Y. Liu, X. Qi, K. Hui, K. Hui, Z. Huang, J. Li, K. Huang, and J. Zhong, J. Mater. Chem. 22, 21513 (2012).CrossRefGoogle Scholar
  34. 34.
    S. Prokes, J. Gole, X. Chen, C. Burda, and W. Carlos, Adv. Funct. Mater. 15, 161 (2010).CrossRefGoogle Scholar
  35. 35.
    S. Cho, H. Nguyen, G. Gyawali, J. Son, T. Sekino, B. Joshi, S. Kim, Y. Jo, T. Kim, and S. Lee, Catal. Today 266, 46 (2016).CrossRefGoogle Scholar
  36. 36.
    Z. Zhang, Y. Yu, and P. Wang, ACS Appl. Mater. Interfaces 4, 990 (2012).CrossRefGoogle Scholar
  37. 37.
    Q. Sun, X. Sun, H. Dong, Q. Zhang, and L. Dong, J. Renew. Sustain. Energy 5, 16828 (2013).Google Scholar
  38. 38.
    M. Yang, J. Xu, J. Wei, J. Sun, W. Liu, and J. Zhu, Appl. Phys. Lett. 100, 123502 (2012).CrossRefGoogle Scholar
  39. 39.
    F. Ricci, R. Lai, A. Heeger, K. Plaxco, and J. Sumner, Langmuir 23, 6827 (2007).CrossRefGoogle Scholar
  40. 40.
    J. Gong, Y. Li, Z. Hu, Z. Zhou, and Y. Deng, J. Phys. Chem. C 114, 9970 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Faculty of EngineeringChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations