Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 135–141 | Cite as

High-Temperature Mechanical Properties of Zn-Based High-Temperature Lead-Free Solders

  • Che-Wei ChangEmail author
  • Kwang-Lung Lin
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • 26 Downloads
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-Free Solder

Abstract

The effect of a minor addition of Ti on the mechanical behavior of Zn-25Sn-xTi (x = 0 wt.%, 0.02 wt.% and 0.04 wt.%) solder alloy at high temperatures of 80°C, 100°C, and 120°C was investigated. The investigation revealed that Ti acted as nucleating agent. The grain size of the Zn-25Sn alloy was significantly refined with the addition of 0.02%Ti. The Zn-25Sn-0.02Ti exhibited the greatest elongation at all test temperatures. An excess addition of Ti (more than 0.04%) was found to cause the formation of ternary TiSn4Zn5 compounds, which is correlated with the degradation of elongation. The fractographs of the solders at high temperature revealed the presence of the TiSn4Zn5 compound in the dimple bottom, indicating that voids nucleated at the particles.

Keywords

High temperature Pb-free solder Zn-Sn alloys microstructure tensile properties intermetallic compound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the Ministry of Science and Technology, Republic of China (Taiwan) for the financial support of this study under MOST 104-2221-E-006-029-MY3.

References

  1. 1.
    G. Zeng, S. McDonald, and K. Nogita, Microelectron. Reliab. 52, 1306 (2012).CrossRefGoogle Scholar
  2. 2.
    X. Yang, W. Hu, X. Yan, and Y. Lei, J. Electron. Mater. 44, 1128 (2015).CrossRefGoogle Scholar
  3. 3.
    C.H. Wang and K.T. Li, Mater. Chem. Phys. 164, 223 (2015).CrossRefGoogle Scholar
  4. 4.
    K. Suganuma, S.J. Kim, and K.S. Kim, JOM 61, 64 (2009).CrossRefGoogle Scholar
  5. 5.
    R. Mahmudi and M. Eslami, J. Mater. Sci.: Mater. Electron. 22, 1168 (2011).Google Scholar
  6. 6.
    R. Mahmudi and M. Eslami, J. Electron. Mater. 39, 2495 (2010).CrossRefGoogle Scholar
  7. 7.
    X. Niu and K.L. Lin, Mater. Sci. Eng., A 677, 384 (2016).CrossRefGoogle Scholar
  8. 8.
    T. Takahashi, S. Komatsu, H. Nishikawa, and T. Takemoto, J. Electron. Mater. 39, 1241 (2010).CrossRefGoogle Scholar
  9. 9.
    J.E. Lee, K.S. Kim, K. Suganuma, J. Takenaka, and K. Hagio, Mater. Trans. 46, 2413 (2005).CrossRefGoogle Scholar
  10. 10.
    X. Niu and K.L. Lin, J. Alloys Compd. 646, 852 (2015).CrossRefGoogle Scholar
  11. 11.
    W.C. Huang and K.L. Lin, J. Electron. Mater. 45, 6137 (2016).CrossRefGoogle Scholar
  12. 12.
    S. Kim, K.S. Kim, S.S. Kim, and K. Suganuma, J. Electron. Mater. 38, 266 (2009).CrossRefGoogle Scholar
  13. 13.
    Z.H. Wang, C.T. Chen, and J.T. Jiu, J. Alloys Compd. 716, 231 (2017).CrossRefGoogle Scholar
  14. 14.
    J.E. Lee, K.S. Kim, K. Suganuma, M. Inoue, and G. Izuta, Mater. Trans. 48, 584 (2007).CrossRefGoogle Scholar
  15. 15.
    C.W. Chang and K.L. Lin, J. Mater. Sci.: Mater. Electron. 29, 10962 (2018).Google Scholar
  16. 16.
    X. Niu and K.L. Lin, J. Mater. Sci.: Mater. Electron. 28, 105 (2017).Google Scholar
  17. 17.
    C.L. Chuang, L.C. Tsao, H.K. Lin, and L.P. Feng, Mater. Sci. Eng., A 558, 478 (2012).CrossRefGoogle Scholar
  18. 18.
    K.R. Cardoso, D.N. Travessa, A.G. Escorial, and M. Lieblich, Mater. Res. 10, 199 (2007).CrossRefGoogle Scholar
  19. 19.
    T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker, Binary Alloy Phase Diagrams (Park, OH: ASM Metals, 1986), p. 2086.Google Scholar
  20. 20.
    G.P. Vassilev, E.S. Dobrev, and J.C. Tedenac, J. Alloys Compd. 407, 170 (2006).CrossRefGoogle Scholar
  21. 21.
    H. Okamoto, J. Phase Equilib. Diffus. 29, 211 (2008).CrossRefGoogle Scholar
  22. 22.
    H. Okamoto, M.E. Schlesinger, and E.M. Mueller, Alloy Phase Diagram Committee, Rev ed. (Park, OH: ASM Metals, 2016), p. 370.CrossRefGoogle Scholar
  23. 23.
    K. Doi, S. Ono, H. Ohtani, and M. Hasebe, J. Phase Equilib. Diffus. 27, 63 (2006).CrossRefGoogle Scholar
  24. 24.
    G.P. Vassilev, E.S. Dobrev, and J.C. Tedenac, Cryst. Res. Technol. 41, 739 (2006).CrossRefGoogle Scholar
  25. 25.
    H. Nose, M. Sakane, Y. Tsukada, and H. Nishimura, J. Electron. Packag. 125, 59 (2003).CrossRefGoogle Scholar
  26. 26.
    K. Lange, Handbook of Metal Forming, 1st ed. (New York: McGraw-Hill, 1985), pp. 320–323.Google Scholar
  27. 27.
    D.C. Stouffer and L.T. Dame, Inelastic Deformation of Metals: Models, Mechanical Properties, and Metallurgy (Hoboken: Wiley, 1996), pp. 6–21.Google Scholar
  28. 28.
    W.L.R. Santos, C.B. Cruz, J.E. Spinelli, N. Cheung, and A. Garcia, Mater. Sci. Eng., A 712, 127 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainanTaiwan, ROC

Personalised recommendations