Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 656–661 | Cite as

Microwave Dielectric Properties of Na5RE(MoO4)4 (RE = La, Gd, Dy, Er) Ceramics with a Low Sintering Temperature

  • Liufang Meng
  • Changlai YuanEmail author
  • Baohua Zhu
  • Xiao Liu
  • Fei Liu
  • Jiwen Xu
  • Changrong Zhou
  • Guohua Chen
Article
  • 21 Downloads

Abstract

Na5RE(MoO4)4 (RE = La, Gd, Dy, Er) ceramics have been synthesized by the conventional solid-state reaction method. The crystallizations, microstructures and microwave dielectric properties of Na5RE(MoO4)4 ceramics were also investigated. The room-temperature x-ray diffraction patterns of Na5RE (MoO4)4 ceramics illustrate a tetragonal structure with a I 41/a space group. The grain size of Na5La(MoO4)4 is larger than that of Na5RE(MoO4)4 (RE = Gd, Dy, Er) ceramics, and uneven grains are observed in the systems. Na5RE (MoO4)4 ceramics sintered at 570–690°C for 4 h possess excellent microwave dielectric properties with εr = 6.4–8.4, τf = − 27.7–34.3 ppm/°C, and Q × f = 4073–24411 GHz at their optimum sintering temperature. The nonreactivity of Na5Er(MoO4)4 with silver is evidenced by x-ray diffraction, and SEM and EDS analysis reveal that silver can be a co-firable electrode material for the present ceramics.

Keywords

Low-temperature sintering microwave dielectric properties Na5RE(MoO4)4 microstructures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (Grant No. 11464006) for financial support.

References

  1. 1.
    L. Fang, D. Chu, H. Zhou, X. Chen, H. Zhang, B. Chang, C. Li, Y. Qin, and X. Huang, J. Alloys Compd. 509, 8840 (2011).CrossRefGoogle Scholar
  2. 2.
    H. Yang, Y. Lin, J. Zhu, F. Wang, and Z. Dai, J. Alloys Compd. 502, L20 (2010).CrossRefGoogle Scholar
  3. 3.
    R. Umemura, H. Ogawa, and A. Kan, J. Eur. Ceram. Soc. 26, 2063 (2006).CrossRefGoogle Scholar
  4. 4.
    S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, J. Am. Ceram. Soc. 66, 421 (1983).CrossRefGoogle Scholar
  5. 5.
    K.P. Surendran, N. Santha, P. Mohanan, and M.T. Sebastian, Eur. Phys. J. B 41, 301 (2004).CrossRefGoogle Scholar
  6. 6.
    A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M. Valant, and D. Suvorov, J. Am. Ceram. Soc. 89, 3441 (2006).CrossRefGoogle Scholar
  7. 7.
    W. Lei, W.Z. Lu, D. Liu, and J.H. Zhu, J. Am. Ceram. Soc. 92, 105 (2009).CrossRefGoogle Scholar
  8. 8.
    Y.I. Sohn, J. Inaguma, S.O. Yoon, M. Itoh, T. Nakamura, S.J. Yoon, and H.J. Kim, Jpn. J. Appl. Phys. 33, 5466 (1994).CrossRefGoogle Scholar
  9. 9.
    X. Chou, J. Zhai, and X. Yao, Appl. Phys. Lett. 91, 122908 (2007).CrossRefGoogle Scholar
  10. 10.
    M.M. Mao, X.C. Fan, and X.M. Chen, Int. J. Appl. Ceram. Technol. 7, E156 (2010).CrossRefGoogle Scholar
  11. 11.
    D. Zhou, L.X. Pang, J. Guo, G.Q. Zhang, Y. Wu, H. Wang, and X. Yao, J. Eur. Ceram. Soc. 31, 2749 (2011).CrossRefGoogle Scholar
  12. 12.
    J. Dhanya, A.V. Basiluddeen, and R. Ratheesh, Scr. Mater. 132, 1 (2017).CrossRefGoogle Scholar
  13. 13.
    L.X. Pang, H. Liu, D. Zhou, G.B. Sun, W.-G. Qin, and W.G. Liu, Mater. Lett. 72, 128 (2012).CrossRefGoogle Scholar
  14. 14.
    V.A. Morozov, B.I. Lazoryak, S.Z. Shmurak, A.P. Kiselev, O.I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, Chem. Mater. 26, 3238 (2014).CrossRefGoogle Scholar
  15. 15.
    D. Zhou, C.A. Randall, L.-X. Pang, H. Wang, J. Guo, G.-Q. Zhang, Y. Wu, K.-T. Guo, L. Shui, and X. Yao, Mater. Chem. Phys. 129, 688 (2011).CrossRefGoogle Scholar
  16. 16.
    Z. Wang, C. Yuan, Q. Li, Q. Feng, F. Liu, C. Zhou, G. Chen, and G. Rao, J. Mater. Sci. Mater. Electron. 28, 9941 (2017).CrossRefGoogle Scholar
  17. 17.
    C. Guo, F. Gao, Y. Xu, L. Liang, F.G. Shi, and B. Yan, J. Phys. D Appl. Phys. 42, 095407 (2009).CrossRefGoogle Scholar
  18. 18.
    J. Dhanya, E. Kalathil Suresh, R. Naveenraj, and R. Ratheesh, Ceram. Int. 44, 6699 (2018).CrossRefGoogle Scholar
  19. 19.
    S. Parida, S.K. Rout, L.S. Cavalcante, E. Sinha, M.S. Li, V. Subramanian, N. Gupta, V.R. Gupta, J.A. Varela, and E. Longo, Ceram. Int. 38, 2129 (2012).CrossRefGoogle Scholar
  20. 20.
    D. Zhou, C.A. Randall, L.X. Pang, H. Wang, J. Guo, G.Q. Zhang, X.G. Wu, L. Shui, and X. Yao, J. Am. Ceram. Soc. 94, 348 (2011).CrossRefGoogle Scholar
  21. 21.
    L.X. Pang, G.B. Sun, and D. Zhou, Mater. Lett. 65, 164 (2011).CrossRefGoogle Scholar
  22. 22.
    K.H. Yoon, W.S. Kim, and E.S. Kim, Mater. Sci. Eng. B 99, 112 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Liufang Meng
    • 1
  • Changlai Yuan
    • 1
    • 2
    Email author
  • Baohua Zhu
    • 1
  • Xiao Liu
    • 1
    • 2
  • Fei Liu
    • 1
  • Jiwen Xu
    • 1
    • 2
  • Changrong Zhou
    • 1
    • 2
  • Guohua Chen
    • 1
    • 2
  1. 1.College of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations