Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 662–668 | Cite as

Chromium-Based Metal-Organic Framework MIL101(Cr)–CdSe Quantum Dot Composites: Synthesis, Morphology, Gas Adsorption and Photoluminescent Properties

  • Phuong T. K. Nguyen
  • Hai Viet LeEmail author
  • Kim-Tien Thien Nguyen
  • Van-Anh Thi Hoang
  • Thu Thi Dinh
  • Bao-Vy Mong Quach
  • Nguyen Ly La
  • Hoang Thai Nguyen
  • Thien Thanh Co
  • Quan Phung
  • Man Van Tran
  • Xuan-Binh Thi Phung
  • Mai-Trang Do Tran
Article
  • 27 Downloads

Abstract

Chromium-based metal-organic framework MIL101(Cr)–CdSe quantum dot (QD) composites were synthesized by two different approaches: (a) loading the pre-synthesized CdSe QDs onto the surface of the MIL101(Cr) particles [denoted as CdSe/MIL101(Cr)] and (b) in situ synthesis of CdSe QDs into the pores of MIL101(Cr) (denoted as CdSe@Cr-MIL-101). The effect of synthesis technique on morphology, gas adsorption and photoluminescent properties of the as-prepared MOF-QD composites has been investigated. It was found that the porosity of composite materials strongly depends on the loading amount of CdSe QDs. Interestingly, the incorporation of CdSe QDs into/onto to MIL101(Cr) has enhanced optical absorption of the composites in the visible region (redshift) and therefore has potential applications in photocatalysis or solar cells.

Keywords

CdSe MIL101(Cr) metal-organic frameworks metal-organic framework–quantum dot composite quantum dots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The Vietnam National University-Ho Chi Minh City (VNU-HCM) is acknowledged for financial support via Grant No. B2014-50-01.

References

  1. 1.
    H.C. Zhou, J.R. Long, and O.M. Yaghi, Chem. Rev. 112, 673 (2012).CrossRefGoogle Scholar
  2. 2.
    S.L. Li and Q. Xu, Energy Environ. Sci. 6, 1656 (2013).CrossRefGoogle Scholar
  3. 3.
    C.G. Silva, A. Corma, and H. García, J. Mater. Chem. 20, 3141 (2010).CrossRefGoogle Scholar
  4. 4.
    J.L. Wang, C. Wang, and W. Lin, ACS Catal. 2, 2630 (2012).CrossRefGoogle Scholar
  5. 5.
    T.H. Park, A.J. Hickman, K. Koh, S. Martin, A.G. Wong-Foy, M.S. Sanford, and A.J. Matzger, J. Am. Chem. Soc. 133, 20138 (2011).CrossRefGoogle Scholar
  6. 6.
    R. Ameloot, M.B.J. Roeffaers, G. De Cremer, F. Vermoortele, J. Hofkens, B.F. Sels, and D.E. De Vos, Adv. Mater. 23, 1788 (2011).CrossRefGoogle Scholar
  7. 7.
    P. Falcaro, A.J. Hill, K.M. Nairn, J. Jasieniak, J.I. Mardel, T.J. Bastow, S.C. Mayo, M. Gimona, D. Gomez, H.J. Whitfield, R. Riccò, A. Patelli, B. Marmiroli, H. Amenitsch, T. Colson, L. Villanova, and D. Buso, Nat. Commun. 2, 237 (2011).CrossRefGoogle Scholar
  8. 8.
    M.R. Lohe, K. Gedrich, T. Freudenberg, E. Kockrick, T. Dellmann, and S. Kaskel, Chem. Commun. 47, 3075 (2011).CrossRefGoogle Scholar
  9. 9.
    D. Buso, K.M. Nairn, M. Gimona, A.J. Hill, and P. Falcaro, Chem. Mater. 23, 929 (2011).CrossRefGoogle Scholar
  10. 10.
    Q.L. Zhu and Q. Xu, Chem. Soc. Rev. 43, 5468 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Bhattacharjee, C. Chen, and W.S. Ahn, RSC Adv. 4, 52500 (2014).CrossRefGoogle Scholar
  12. 12.
    G. Férey, C. Mellot-Draznieks, and C. Serre, Science 309, 2040 (2005).CrossRefGoogle Scholar
  13. 13.
    J. Aguiler-Sigalat and D. Bradshaw, Coord. Chem. Rev. 307, 267 (2016).CrossRefGoogle Scholar
  14. 14.
    L. Bromberg, Y. Diao, H. Wu, S.A. Speakman, and T.A. Hatton, Chem. Mater. 24, 1664 (2012).CrossRefGoogle Scholar
  15. 15.
    R.B. Vasiliev, S.G. Dorofeev, D.N. Dirin, D.A. Belov, and T.A. Kuznetsova, Mendeleev Commun. 14, 169 (2004).CrossRefGoogle Scholar
  16. 16.
    T. Wakaoka, K. Hirai, K. Murayama, Y. Takano, H. Takagi, S. Furukawa, and S. Kitagawa, J. Mater. Chem. C 2, 7173 (2014).CrossRefGoogle Scholar
  17. 17.
    W.W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).CrossRefGoogle Scholar
  18. 18.
    Z. Zhou, B. Cheng, C. Ma, F. Xu, J. Xiao, Q. Xia, and Z. Li, RSC Adv. 5, 94276 (2015).CrossRefGoogle Scholar
  19. 19.
    D. Yin, C. Li, H. Ren, O. Shekhah, J. Liu, and C. Liang, RSC Adv. 7, 1626 (2017).CrossRefGoogle Scholar
  20. 20.
    D.M. Fernandes, A.D.S. Barbosa, J. Pires, S.S. Balula, L. Cunha-Silva, and C. Freire, ACS Appl. Mater. Interfaces. 5, 13382 (2013).CrossRefGoogle Scholar
  21. 21.
    N.A. Hamizi and M.R. Johan, Mater. Chem. Phys. 124, 395 (2010).CrossRefGoogle Scholar
  22. 22.
    J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu, and Y. Sun, Chem. Commun. 49, 6761 (2013).CrossRefGoogle Scholar
  23. 23.
    L. Xu, K. Chen, H.M. El-Khair, M. Li, and X. Huang, Appl. Surf. Sci. 172, 84 (2001).CrossRefGoogle Scholar
  24. 24.
    J.T. Siy, E.H. Brauser, T.K. Thompson, and M.H. Bartl, J. Mater. Chem. C 2, 675 (2014).CrossRefGoogle Scholar
  25. 25.
    B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Phuong T. K. Nguyen
    • 1
  • Hai Viet Le
    • 2
    Email author
  • Kim-Tien Thien Nguyen
    • 2
  • Van-Anh Thi Hoang
    • 2
  • Thu Thi Dinh
    • 2
  • Bao-Vy Mong Quach
    • 2
  • Nguyen Ly La
    • 2
  • Hoang Thai Nguyen
    • 2
  • Thien Thanh Co
    • 2
  • Quan Phung
    • 2
  • Man Van Tran
    • 2
  • Xuan-Binh Thi Phung
    • 3
  • Mai-Trang Do Tran
    • 4
  1. 1.Center for Innovative Materials and Architectures (INOMAR)Vietnam National University-Ho Chi Minh (VNU-HCM)Ho Chi Minh CityVietnam
  2. 2.HCMC University of ScienceVietnam National UniversityHo Chi Minh CityVietnam
  3. 3.Electric Power UniversityHanoiVietnam
  4. 4.Thuy Loi UniversityHanoiVietnam

Personalised recommendations