Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 838–844 | Cite as

Numerical Simulation of Mobility Effects on Transient Electroluminescence Spikes in Organic Light-Emitting Diodes

  • Kai XuEmail author
  • Sheng Hu
  • Juntao HuEmail author
  • Xianghua Wang
Article
  • 25 Downloads

Abstract

In this study, we simulate the transient electroluminescence (EL) in organic light-emitting diodes. The forming mechanism of transient EL spikes is discussed in detail. After applying a voltage pulse, the remaining mobile charges drift to the opposite trapped charges and lead to an increase in the exciton recombination rate, which corresponds to the EL spike phenomenon. We observe an EL spike in a solution-processed 2,4,5,6-tetrakis(carbazol-9-yl)-1,3-dicyanobenz-ene(4CzIPN)-doped emitting device, in which 4CzIPN acts as an electron trapping center and confines the electrons within the emitting layer. To further study the effect of the mobility on the EL spike, we simulate it at different electron/hole mobilities. The results show that increasing the hole mobility increases the EL spike. Moreover, when the charge mobility is temperature- and electric field-dependent, the simulation results suggest that if the charge mobility is more susceptible to the electric field, then a lower EL spike is observed, whereas with temperature decrease, a longer tailing is noticeable at the falling edge.

Keywords

Organic light-emitting diode numerical simulation transient electroluminescence spike charge transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913–915 (1987).CrossRefGoogle Scholar
  2. 2.
    F. So and D. Kondakov, Adv. Mater. 22, 3762–3777 (2010).CrossRefGoogle Scholar
  3. 3.
    T. Fleetham, G. Li, and J. Li, Adv. Mater. 29, 7116 (2017).CrossRefGoogle Scholar
  4. 4.
    M.K. Fung, Y.Q. Li, and L.S. Liao, Adv. Mater. 28, 10381–10408 (2016).CrossRefGoogle Scholar
  5. 5.
    Y. Zhao, L. Zh, J. Chen, and D. Ma, Org. Electron. 13, 1340–1348 (2012).CrossRefGoogle Scholar
  6. 6.
    H. Bassler and A. Kohler, Top. Curr. Chem. 312, 1–65 (2012).Google Scholar
  7. 7.
    K. Cheon and J. Shinar, Phys. Rev. B 69, 201306 (2004).CrossRefGoogle Scholar
  8. 8.
    Y. Luo and H. Aziz, Adv. Funct. Mater. 20, 1285–1293 (2010).CrossRefGoogle Scholar
  9. 9.
    C. Weichsel, L. Burtone, S. Reineke, S.I. Hintschich, M.C. Gather, K. Leo, and B. Lüssem, Phys. Rev. B 86, 075204 (2012).CrossRefGoogle Scholar
  10. 10.
    Q.M. Peng, P. Chen, and F.T. Li, Appl. Phys. Lett. 102, 023301 (2013).Google Scholar
  11. 11.
    D. Yokoyama, Y. Park, B. Kim, S. Kim, Y.J. Pu, J. Kido, and J. Park, Appl. Phys. Lett. 99, 123303 (2011).CrossRefGoogle Scholar
  12. 12.
    B. Ruhstaller and S.A. Kart, J. Appl. Phys. 89, 4575 (2001).CrossRefGoogle Scholar
  13. 13.
    S. Altazin, S. Züfle, E. Knapp, C. Krisch, T.D. Schmidt, L. Jäger, Y. Noguchi, W. Brütting, and B. Ruhstaller, Org. Electron. 39, 244–249 (2016).CrossRefGoogle Scholar
  14. 14.
    H. Houili, E. Tutiš, H. Lütjens, M.N. Bussac, and L. Zuppiroli, Comput. Phys. Commun. 156, 108–122 (2003).CrossRefGoogle Scholar
  15. 15.
    H. Kageyama, H. Ohishi, M. Tanaka, Y. Ohmori, and Y. Shirota, Adv. Funct. Mater. 19, 3948–3955 (2009).CrossRefGoogle Scholar
  16. 16.
    Z. Gan, R. Liu, R. Shinar, and I. Shinar, Appl. Phys. Lett. 97, 113301 (2010).CrossRefGoogle Scholar
  17. 17.
    R. Liu, Z. Gan, R. Shinar, and J. Shinar, Phys. Rev. B 83, 245302 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Key Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic TechnologyHefei University of TechnologyHefeiPeople’s Republic of China
  2. 2.School of Instrument Science and Opto-electronics EngineeringHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations