Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 122–134 | Cite as

Silver Sintered Joint Property Between Silicon Carbide Device and Ceramic Substrate for Electric Vehicle Power Module

  • Won Sik HongEmail author
  • Mi Song Kim
  • Dajung Kim
  • Chulmin Oh
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder

Abstract

Highly reliable sintering technologies operating in extreme conditions are being extensively researched nowadays to improve the efficiency of power modules based on silicon carbide (SiC) devices for use in electric vehicles. In this study, the strength of silver (Ag) sintered joints used in SiC/direct bonded copper (DBC) was recorded at 21.9–23 MPa, at a pressure of 0.2 MPa and zero pressure, at 210°C using 83 wt.% and 88 wt.% Ag paste. Al2O3 and AlN DBCs with copper and Ag finishes were used. The inter-diffusion of the Cu-Ag and the Ag-Ag sintered interfaces contributed to increasing bonding strength. Based on the relationship between bonding layer thickness and densification in the pressurized and pressureless sintering conditions, if densification was at least 93%, the strength of the Ag joint strength was as high as 23.8 MPa. From the results of a simulation of thermal deformation based on the mismatch in the coefficients of thermal expansion of materials without considering heat transfer, the Al2O3 DBC material (rather than AlN) exhibited a small and dispersed deformation of the SiC/DBC sintered module. We also observed that Al2O3 DBC was favorable in terms of warpage.

Keywords

Power module silver sintering silicon carbide pressureless direct bonded copper 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 10063263). We thank Sang-gyu Park and Yong-won Cho of ANSYS Korea for help with the simulation data for deformation (warpage analysis of Ag sintered SiC/DBC module).

References

  1. 1.
    S. Ryu, B. Hull, S. Dhar, L. Cheng, Q. Zhang, J. Richmond, M. Das, A. Agarwal, J. Palmour, A. Lelis, B. Geil, and C. Scozzie, Mater. Sci. Forum 645, 969 (2010).CrossRefGoogle Scholar
  2. 2.
    J. Millan, in Semiconductor Conference (CAS) (2012), p. 57.Google Scholar
  3. 3.
    H. Zhang, W. Li, Y. Gao, H. Zang, J. Jiu, and K. Suganuma, J. Electron. Mater. 46, 5201 (2017).CrossRefGoogle Scholar
  4. 4.
    H. Chin, K. Cheong, and A. Ismail, Metall. Mater. Trans. B 41, 824 (2010).CrossRefGoogle Scholar
  5. 5.
    K.N. Tu and K. Zeng, Mater. Sci. Eng. R Rep. 34, 1 (2001).CrossRefGoogle Scholar
  6. 6.
    M. Abtew and G. Selvaduray, Mater. Sci. Eng. R Rep. 27, 95 (2000).CrossRefGoogle Scholar
  7. 7.
    S.W. Yoon, M.D. Glover, and K. Shiozaki, IEEE Trans. Power Electron. 28(5), 2448 (2013).Google Scholar
  8. 8.
    http://acCuratus.com, http://www.matweb.com. Accessed 30 March 2018.
  9. 9.
  10. 10.
    S.-K. Lin, S. Nagao, E. Yoko, C. Oh, H. Zhang, Y. Liu, S. Lin, and K. Suganuma, Sci. Rep. 6, 34769 (2016).CrossRefGoogle Scholar
  11. 11.
    C. Oh, S. Nagao, T. Kunimune, and K. Suganuma, Appl. Phys. Lett. 104, 161603 (2014).CrossRefGoogle Scholar
  12. 12.
    C. Oh, S. Nagao, and K. Suganuma, J. Mater. Sci. Mater. Electron. 26, 2525 (2015).CrossRefGoogle Scholar
  13. 13.
    A. Michaelides, M.L. Bocquet, P. Sautet, A. Alavi, and D.A. King, Chem. Phys. Lett. 367, 344 (2003).CrossRefGoogle Scholar
  14. 14.
    J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, and Y. Zhou, Scr. Mater. 66, 582 (2012).CrossRefGoogle Scholar
  15. 15.
    J.S. Horschhorn, Introduction to Powder Metallurgy (USA: The Colonial Press Inc., 1969), pp. 155–273.Google Scholar
  16. 16.
    A. Lis, K. Asama, T. Matsuda, T. Santo, and A. Hirose, J. Electron. Mater. 46, 6488 (2017).CrossRefGoogle Scholar
  17. 17.
    W.S. Hong and S.S. Cha, J. Microelectron. Packag. Soc. 19, 67 (2012).CrossRefGoogle Scholar
  18. 18.
    S. Divinski, M. Lohmann, and C. Herzig, Acta Mater. 49, 249 (2001).CrossRefGoogle Scholar
  19. 19.
    R. Shioda, Y. Kariya, N. Mizumura, and K. Sasaki, J. Electron. Mater. 46, 1155 (2017).CrossRefGoogle Scholar
  20. 20.
    E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385 (2005).CrossRefGoogle Scholar
  21. 21.
    K.S. Siow, J. Electron. Mater. 43, 947 (2014).CrossRefGoogle Scholar
  22. 22.
    S. Wang, H. Ji, M. Li, and C. Wang, Mater. Lett. 85, 61 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Electronic Convergence Materials and Device Research CenterKorea Electronics Technology Institute (KETI)Seongnam-siRepublic of Korea

Personalised recommendations