Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1375–1379 | Cite as

Spin Pumping and Temperature-Resolved Ferromagnetic Resonance in Permalloy-Topological Insulator Nanostructured Bilayers

  • M. D. Davydova
  • A. S. Pakhomov
  • A. N. Kuz’michev
  • P. M. Vetoshko
  • P. N. Skirdkov
  • H. C. Han
  • Y. S. Chen
  • J. G. Lin
  • J. C. Wu
  • J. C. A. Huang
  • K. A. ZvezdinEmail author
5th International Conference of Asian Union of Magnetics Societies
  • 41 Downloads
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)

Abstract

The huge spin–orbit coupling inherent to 3D topological insulators makes bilayers of the topological insulator—ferromagnetic metal type very attractive for topological spintronics. We study spin pumping due to ferromagnetic resonance in permalloy ferromagnet—topological insulator bismuth selenide (Bi\(_2\)Se\(_3\)) bilayers. We study cases of both uniform and nanostructured bilayers, where the permalloy layer is in the form of an array of nanocylinders with industry-relevant geometries. We measure the dc voltage signal caused by conversion of the spin current into the charge current in the bulk of topological insulator due to the inverse spin Hall effect. Our results show that the pumped signal for uniform and nanostructured bilayers is comparable, which is important for prospective applications in information and communication technologies. We report the temperature dependencies of a resonance magnetic field for the uniform sample. To obtain theoretical insight into the experimental results, we use a method which involves micromagnetic modeling for estimation of effective constants and dc voltages in experiments with similar nanostructured bilayers.

Keywords

Spin pumping ferromagnetic resonance spin–orbitronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research has been supported by RSF Grant No. 17-12-01333, MOST 105-2112-M-002-010-MY3 and MOST 104-2112-M-018-001-MY3.

References

  1. 1.
    S.S.P. Parkin, M. Hayashi, and L. Thomas, Science 320(5873), 190 (2008).  https://doi.org/10.1126/science.1145799 CrossRefGoogle Scholar
  2. 2.
    S. Tehrani, J.M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerren, IEEE Trans. Magn. 35(5), 2814 (1999).  https://doi.org/10.1109/20.800991 CrossRefGoogle Scholar
  3. 3.
    H. Meng, J. Wang, and J.P. Wang, IEEE Electron Device Lett. 26(6), 360 (2005).  https://doi.org/10.1109/LED.2005.848129 CrossRefGoogle Scholar
  4. 4.
    M. Melzer, D. Makarov, A. Calvimontes, D. Karnaushenko, S. Baunack, R. Kaltofen, Y. Mei, and O.G. Schmidt, Nano Lett. 11(6), 2522 (2011).  https://doi.org/10.1021/nl201108b CrossRefGoogle Scholar
  5. 5.
    T. Kuschel and G. Reiss. Spin orbitronics: charges ride the spin wave, Nat. Nanotechnol. 10(1), 22 (2015).  https://doi.org/10.1038/nnano.2014.279 CrossRefGoogle Scholar
  6. 6.
    A. Soumyanarayanan, N. Reyren, A. Fert, and C. Panagopoulos, Nature 539(7630), 509 (2016).  https://doi.org/10.1038/nature19820 CrossRefGoogle Scholar
  7. 7.
    V.M. Edelstein, Solid State Commun. 73(3), 233 (1990).  https://doi.org/10.1016/0038-1098(90)90963-C CrossRefGoogle Scholar
  8. 8.
    S. Zhang and A. Fert, Phys. Rev. B 94, 184423 (2016).  https://doi.org/10.1103/PhysRevB.94.184423 CrossRefGoogle Scholar
  9. 9.
    C.R. Ast, J. Henk, A. Ernst, L. Moreschini, M.C. Falub, D. Pacilé, P. Bruno, K. Kern, and M. Grioni, Phys. Rev. Lett. 98, 186807 (2007).  https://doi.org/10.1103/PhysRevLett.98.186807 CrossRefGoogle Scholar
  10. 10.
    M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).  https://doi.org/10.1103/RevModPhys.82.3045 CrossRefGoogle Scholar
  11. 11.
    E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88(18), 182509 (2006).  https://doi.org/10.1063/1.2199473 CrossRefGoogle Scholar
  12. 12.
    D. Hsieh, Y. Xia, D. Qian, L. Wray, J. Dil, F. Meier, J. Osterwalder, L. Patthey, J. Checkelsky, N. Ong, A. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. Hor, R. Cava, and M. Hasan, Nature 460(7259), 1101 (2009).  https://doi.org/10.1038/nature08234 CrossRefGoogle Scholar
  13. 13.
    M. Neupane, A. Richardella, J. Sánchez-Barriga, S. Xu, N. Alidoust, I. Belopolski, C. Liu, G. Bian, D. Zhang, D. Marchenko, A. Varykhalov, O. Rader, M. Leandersson, T. Balasubramanian, T.-R. Chang, H.-T. Jeng, D. Basak, H. Lin, A. Bansil, N. Samarth, and M. Hasan, Nat. Commun. 5, 3841 (2014).  https://doi.org/10.1038/ncomms4841 CrossRefGoogle Scholar
  14. 14.
    A. Mellnik, J. Lee, A. Richardella, J. Grab, P. Mintun, M.H. Fischer, A. Vaezi, A. Manchon, E.A. Kim, N. Samarth, and D. Ralph, Nature 511(7510), 449 (2014).  https://doi.org/10.1038/nature13534 CrossRefGoogle Scholar
  15. 15.
    Y. Tserkovnyak and D. Loss, Phys. Rev. Lett. 108, 187201 (2012).  https://doi.org/10.1103/PhysRevLett.108.187201 CrossRefGoogle Scholar
  16. 16.
    T. Yokoyama, Phys. Rev. B 84, 113407 (2011).  https://doi.org/10.1103/PhysRevB.84.113407 CrossRefGoogle Scholar
  17. 17.
    D. Pesin and A.H. MacDonald, Nat. Mater. 11(5), 409 (2012).  https://doi.org/10.1038/nmat3305 CrossRefGoogle Scholar
  18. 18.
    Y. Wang, D. Zhu, Y. Wu, Y. Yang, J. Yu, R. Ramaswamy, R. Mishra, S. Shi, M. Elyasi, K.L. Teo, Y. Wu, and H. Yang, Nat. Commun. 8(1), 1364 (2017).  https://doi.org/10.1038/s41467-017-01583-4 CrossRefGoogle Scholar
  19. 19.
    P. Deorani, J. Son, K. Banerjee, N. Koirala, M. Brahlek, S. Oh, and H. Yang, Phys. Rev. B 90, 094403 (2014).  https://doi.org/10.1103/PhysRevB.90.094403 CrossRefGoogle Scholar
  20. 20.
    H.C. Han, Y.S. Chen, M.D. Davydova, P.N. Petrov, P.N. Skirdkov, J.G. Lin, J.C. Wu, J.C.A Huang, K.A. Zvezdin, and A.K. Zvezdin, Appl. Phys. Lett. 111(18), 182411 (2017).  https://doi.org/10.1063/1.5004097 CrossRefGoogle Scholar
  21. 21.
    J. Han, A. Richardella, S.A. Siddiqui, J. Finley, N. Samarth, and L. Liu, Phys. Rev. Lett. 119, 077702 (2017).  https://doi.org/10.1103/PhysRevLett.119.077702 CrossRefGoogle Scholar
  22. 22.
    M. Jamali, J.S. Lee, J.S. Jeong, F. Mahfouzi, Y. Lv, Z. Zhao, B.K. Nikoli, K.A. Mkhoyan, N. Samarth, and J.P. Wang, Nano Lett. 15(10), 7126 (2015).  https://doi.org/10.1021/acs.nanolett.5b03274 CrossRefGoogle Scholar
  23. 23.
    Y. Lv, J. Kally, D. Zhang, J.S. Lee, M. Jamali, N. Samarth, and J.P. Wang, Nat. Commun. 9(1), 111 (2018).  https://doi.org/10.1038/s41467-017-02491-3 CrossRefGoogle Scholar
  24. 24.
    Y. Liu, Z. Yuan, R.J. Wesselink, A.A. Starikov, and P.J. Kelly, Phys. Rev. Lett. 113(20), 207202 (2014).  https://doi.org/10.1103/PhysRevLett.113.207202 CrossRefGoogle Scholar
  25. 25.
    S. Gupta, S. Kanai, F. Matsukura, and H. Ohno, Jpn. J. Appl. Phys. 57(2), 020302 (2018).CrossRefGoogle Scholar
  26. 26.
    Y. Zhao, Q. Song, S.H. Yang, T. Su, W. Yuan, S.S. Parkin, J. Shi, and W. Han, Sci. Rep. 6, 22890 (2016).  https://doi.org/10.1038/srep22890 CrossRefGoogle Scholar
  27. 27.
    Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, and B.I. Halperin, Rev. Mod. Phys. 77, 1375 (2005).  https://doi.org/10.1103/RevModPhys.77.1375 CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • M. D. Davydova
    • 1
  • A. S. Pakhomov
    • 1
  • A. N. Kuz’michev
    • 1
    • 5
  • P. M. Vetoshko
    • 1
    • 5
  • P. N. Skirdkov
    • 1
    • 5
  • H. C. Han
    • 2
  • Y. S. Chen
    • 4
  • J. G. Lin
    • 4
  • J. C. Wu
    • 2
  • J. C. A. Huang
    • 2
    • 3
  • K. A. Zvezdin
    • 1
    • 5
    • 6
    Email author
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  2. 2.Department of PhysicsNational Changhua University of EducationChanghuaTaiwan
  3. 3.National Cheng Kung UniversityTainan CityTaiwan
  4. 4.Center for Condensed Matter SciencesNational Taiwan UniversityTaipeiTaiwan
  5. 5.Russian Quantum CenterMoscow RegionRussia
  6. 6.Prokhorov General Physics Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations