Journal of Electronic Materials

, Volume 48, Issue 1, pp 684–695 | Cite as

Synthesis of ZnO Nanosheets Morphology by Ce Doping for Photocatalytic Activity

  • G. Vijayaprasath
  • P. Soundarrajan
  • G. Ravi


Pure and gradient amounts of cerium (Ce)-doped zinc oxide (ZnO) were synthesized by a co-precipitation method and then their photocatalytic activities were inspected. X-ray diffractometer patterns of the pure and Cedoped ZnO nanostructures exhibit hexagonal wurtzite crystal structure. Field emission scanning electron microscopic images show that the ZnO nanospindel morphology is changed into two-dimensional (2D) polar surface-oriented nanosheets by a cerium doping level up to 0.06 mol.%. The red-shift in the near band edge emission and strong defect states emissions (blue and green) are observed in ZnO with respect to the Ce doping level. From the detailed photocatalytic experiments, the maximum methylene blue dye degradation, 86.9%, is observed on the 0.06 mol.% Ce-doped ZnO photocatalyst. The eventual conclusion is that the edges of the (001) crystallographic facet attach to each other to form a ZnO nanosheet morphology at a specific ratio of Ce doping that serves as a good photocatalyst for methylene blue dye degradation.


Nanosheets photoluminescence magnetic property photocatalytic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors G. Vijayaprasath and P. Soundarrajan are grateful to the Department of Science and Technology (DST) for financial support by awarding prestigious National Post-Doctoral Fellow (PDF/2017/000348 and PDF/2017/000497) under the SERB Scheme.


  1. 1.
    Y. Peng, S. Qin, W.-S. Wang, and A.-W. Xu, Cryst. Eng. Commun. 15, 6518 (2013).CrossRefGoogle Scholar
  2. 2.
    Y. Liang, N. Guo, L. Li, R. Li, G. Ji, and S. Gan, RSC Adv. 5, 59887 (2015).CrossRefGoogle Scholar
  3. 3.
    G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa, and G. Ravi, Mater. Res. Bull. 76, 48 (2016).CrossRefGoogle Scholar
  4. 4.
    V. Rajendar, T. Dayakar, K. Shobhan, I. Srikanth, and K.V. Rao, Superlattices Microstruct. 75, 551 (2014).CrossRefGoogle Scholar
  5. 5.
    P.V. Adhyapak, S.P. Meshram, A.A. Pawar, D.P. Amalnerkar, U.P. Mulik, and I.S. Mulla, Ceram. Int. 40, 12105 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Rezaei and A. Habibi-Yangjeh, Appl. Surf. Sci. 265, 591 (2013).CrossRefGoogle Scholar
  7. 7.
    G. Vijayaprasath, R. Murugan, T. Mahalingam, Y. Hayakawa, and G. Ravi, Ceram. Int. 41, 10607 (2015).CrossRefGoogle Scholar
  8. 8.
    Y. Li, J.-C. Liu, X.-X. Lian, T. Lu, and F.-X. Zhao, Trans. Nonferrous Metals Soc. China 25, 3657 (2015).CrossRefGoogle Scholar
  9. 9.
    R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang, and S.H. Kim, Ceram. Int. 41, 7773 (2015).CrossRefGoogle Scholar
  10. 10.
    L. Zhang, X. Liu, C. Geng, H. Fang, Z. Lian, X. Wang, D. Shen, and Q. Yan, Inorg. Chem. 52, 10167 (2013).CrossRefGoogle Scholar
  11. 11.
    S. Chakraborti, S. Sarwar, and P. Chakrabarti, J. Phys. Chem. B 117, 13397 (2013).CrossRefGoogle Scholar
  12. 12.
    S. Zhang, F. Hu, J. He, W. Cheng, Q. Liu, Y. Jiang, Z. Pan, W. Yan, Z. Sun, and S. Wei, J. Phys. Chem. C 117, 24913 (2013).CrossRefGoogle Scholar
  13. 13.
    G. Vijayaprasath, G. Ravi, A.S.H. Hameed, and T. Mahalingam, J. Phys. Chem. C 118, 9715 (2014).CrossRefGoogle Scholar
  14. 14.
    K. Santhi, C. Rani, R.D. Kumar, and S. Karuppuchamy, J. Mater. Sci.: Mater. Electron. 26, 10068 (2015).Google Scholar
  15. 15.
    G. Vijayaprasath, R. Murugan, S. Asaithambi, G.A. Babu, P. Sakthivel, T. Mahalingam, Y. Hayakawa, and G. Ravi, Appl. Phys. A 122, 1 (2016).CrossRefGoogle Scholar
  16. 16.
    O. Yayapao, T. Thongtem, A. Phuruangrat, and S. Thongtem, Mater. Lett. 90, 83 (2013).CrossRefGoogle Scholar
  17. 17.
    B. Babu, G.R. Sundari, K. Ravindranadh, M.R. Yadav, and R.V.S.S.N. Ravikumar, J. Magn. Magn. Mater. 372, 79 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. Wang, X. Liao, Z. Huang, G. Yin, J. Gu, and Y. Yao, Colloids Surf. A 372, 165 (2010).CrossRefGoogle Scholar
  19. 19.
    W.M.H. Oo, M.D. Mc Cluskey, A.D. Lalonde, and M.G. Norton, Appl. Phys. Lett. 86, 73111 (2005).CrossRefGoogle Scholar
  20. 20.
    M. Ghosh, N. Dilawar, A.K. Bandyopadhyay, and A.K. Raychaudhuri, J. Appl. Phys. 106, 84306 (2009).CrossRefGoogle Scholar
  21. 21.
    L.M. Qiu, F. Liu, L.Z. Zhao, Y. Ma, and J.N. Yao, Appl. Surf. Sci. 252, 4931 (2006).CrossRefGoogle Scholar
  22. 22.
    B. Cao, W. Cai, Y. Li, F. Sun, and L. Zhang, Nanotechnology 16, 1734 (2005).CrossRefGoogle Scholar
  23. 23.
    G.-R. Li, X.-H. Lu, W.-X. Zhao, C.-Y. Su, and Y.-X. Tong, Cryst. Growth Des. 8, 1276 (2008).CrossRefGoogle Scholar
  24. 24.
    S. Anandan and M. Miyauchi, Phys. Chem. Chem. Phys. 13, 14937 (2011).CrossRefGoogle Scholar
  25. 25.
    B.M. Reddy, S. Mehdi, and E.P. Reddy, Catal. Lett. 20, 317 (1993).CrossRefGoogle Scholar
  26. 26.
    C. Karunakaran, P. Gomathisankar, and G. Manikandan, Mater. Chem. Phys. 123, 585 (2010).CrossRefGoogle Scholar
  27. 27.
    J. Zhu, J. Yang, Z.-F. Bian, J. Ren, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, and K.-N. Fan, Appl. Catal. B 76, 82 (2007).CrossRefGoogle Scholar
  28. 28.
    T.C. Damen, S.P.S. Proto, and B. Tell, Phys. Rev. 142, 570 (1966).CrossRefGoogle Scholar
  29. 29.
    M.K. Gupta and B. Kumar, J. Mater. Chem. 21, 14559 (2011).CrossRefGoogle Scholar
  30. 30.
    M. Palard, J. Balencie, A. Maguer, and J.F. Hochepied, Mater. Chem. Phys. 120, 79 (2010).CrossRefGoogle Scholar
  31. 31.
    S. Kumar, S. Mukherjee, R.K. Singh, S. Chatterjee, and A.K. Ghosh, J. Appl. Phys. 110, 103508 (2011).CrossRefGoogle Scholar
  32. 32.
    J.I. Panvoke, Optical Process in Semiconductors (Upper Saddle River: Prentice-Hall, 1971).Google Scholar
  33. 33.
    X. Li, H. Zhu, J. Wei, K. Wang, E. Xu, Z. Li, and D. Wu, Appl. Phys. A 97, 341 (2009).CrossRefGoogle Scholar
  34. 34.
    J. Tauc, Amorphous and Liquid Semiconductors (New York: Plenum Press, 1974).CrossRefGoogle Scholar
  35. 35.
    Q.J. Yu, W.Y. Fu, C.L. Yu, H.B. Yang, R.H. Wei, M.H. Li, and S.K. Liu, J. Phys. Chem. C 111, 17521 (2007).CrossRefGoogle Scholar
  36. 36.
    K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, and J. Zhang, Appl. Catal. B 91, 397 (2009).CrossRefGoogle Scholar
  37. 37.
    B.H. Zeng, G.T. Duan, Y. Li, S.K. Yang, X.X. Xu, and W.P. Cai, Adv. Funct. Mater. 20, 561 (2010).CrossRefGoogle Scholar
  38. 38.
    W.E. Mahmoud, J. Cryst. Growth 312, 3075 (2010).CrossRefGoogle Scholar
  39. 39.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).CrossRefGoogle Scholar
  40. 40.
    J. Maragatha, K. Jothivenkatachalam, and S. Karuppuchamy, J. Mater. Sci.: Mater. Electron. 27, 9233 (2016).Google Scholar
  41. 41.
    P. Sun, L. Liu, S.-C. Cui, and J.-G. Liu, Catal. Lett. 144, 2107 (2014).CrossRefGoogle Scholar
  42. 42.
    K. Santhi, J. Maragatha, C. Rani, and S. Karuppuchamy, Mater. Focus 5, 1 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Electrochemical Material Science DivisionCSIR-CECRIKaraikudiIndia
  2. 2.Department of PhysicsAlagappa UniversityKaraikudiIndia

Personalised recommendations