Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 526–535 | Cite as

Gas Sensing Properties of Hydrothermally Synthesized Button Rose-Like WO3 Thin Films

  • M. S. Patil
  • V. L. Patil
  • N. L. Tarwal
  • D. D. More
  • V. V. Alman
  • L. D. Kadam
  • P. S. Patil
  • J. H. Kim
Article
  • 20 Downloads

Abstract

In this paper, we have synthesized the WO3 button rose-like morphology directly grown on glass substrate using NaOH as an etching agent by hydrothermal method at 100°C. The formation of the WO3 button rose and its structural, optical, surface morphological and electrical properties were studied by various characterization techniques. The button rose-like morphology and orthorhombic crystal structure were confirmed by scanning electron microscopy (SEM) and x-ray diffraction techniques (XRD), respectively. The optical spectroscopy measurements reveal the band gap energy of WO3 button rose-like morphology varied between 2.2 and 2.4 eV. It is seen that the button rose-like morphology plays a crucial role in gas sensing properties. The as-synthesized WO3 button rose shows a gas response of about 262% at 6 ppm of NO2 gas. Particularly, this gas sensor shows better gas sensitivity towards NO2 gas than the other gases. Because of the high value of gas sensitivity, the reported WO3 with button rose-like morphology could be a suitable candidate for NO2 sensing.

Keywords

WO3 button rose hydrothermal method Etching agent: NaOH NO2 gas sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was partially supported by the Human Resources Development Program (No. 20164030201310) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korea, Government Ministry of Trade, Industry and Energy.

References

  1. 1.
    S. Bai, K. Zhang, X. Shu, S. Chen, R. Luo, D. Li, and A. Chen, CrystEngComm. 16, 10210 (2014).CrossRefGoogle Scholar
  2. 2.
    D. Meng, N.M. Shaalan, T. Yamazaki, and T. Kikuta, Sens. Actuators B Chem. 169, 113 (2012).CrossRefGoogle Scholar
  3. 3.
    L. Inside, G. Access, M. Science, and E. July, 15, (2004).Google Scholar
  4. 4.
    J.J. Qi, S. Gao, K. Chen, J. Yang, H.W. Zhao, L. Guo, and S.H. Yang, J. Mater. Chem. A 3, 18019 (2015).CrossRefGoogle Scholar
  5. 5.
    K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Sens. Actuators B Chem. 160, 580 (2011).CrossRefGoogle Scholar
  6. 6.
    B. Xiao, Q. Zhao, C. Xiao, T. Yang, P. Wang, F. Wang, X. Chen, and M. Zhang, CrystEngComm 17, 5710 (2015).CrossRefGoogle Scholar
  7. 7.
    F. Fan, P. Tang, Y. Wang, Y. Feng, A. Chen, R. Luo, and D. Li, Sens. Actuators B Chem. 215, 231 (2015).CrossRefGoogle Scholar
  8. 8.
    S.H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, and A.C. Dillon, Adv. Mater. 18, 763 (2006).CrossRefGoogle Scholar
  9. 9.
    D. Ma, H. Wang, Q. Zhang, and Y. Li, J. Mater. Chem. 22, 16633 (2012).CrossRefGoogle Scholar
  10. 10.
    G. Xi, J. Ye, Q. Ma, N. Su, H. Bai, and C. Wang, J. Am. Chem. Soc. 134, 6508 (2012).CrossRefGoogle Scholar
  11. 11.
    X. Chen, Y. Zhou, Q. Liu, Z. Li, J. Liu, Z. Zou, and A.C.S. Appl, Mater. Interfaces 4, 3372 (2012).CrossRefGoogle Scholar
  12. 12.
    S.K. Biswas and J.O. Baeg, Int. J. Hydrogen Energy 38, 3177 (2013).CrossRefGoogle Scholar
  13. 13.
    Y.P. Xie, G. Liu, L. Yin, and H.M. Cheng, J. Mater. Chem. 22, 6746 (2012).CrossRefGoogle Scholar
  14. 14.
    L. You, X. He, D. Wang, P. Sun, Y.F. Sun, X.S. Liang, Y. Du, and G.Y. Lu, Sens. Actuators B Chem. 173, 426 (2012).CrossRefGoogle Scholar
  15. 15.
    S. Wei, Y. Xing, Y. Li, Y. Zhao, W. Du, and M. Zhou, Vacuum 129, 13 (2016).CrossRefGoogle Scholar
  16. 16.
    F. Annanouch, S. Vallejos, C. Blackman, X. Correig, and E. Llobet, Procedia Eng. 47, 904 (2012).CrossRefGoogle Scholar
  17. 17.
    K. Galatsis, Y.X. Li, W. Wlodarski, and K. Kalantar-zadeh, Sens. Actuators B Chem. 77, 478 (2001).CrossRefGoogle Scholar
  18. 18.
    M. Ferroni, D. Boscarino, E. Comini, D. Gnani, V. Guidi, G. Martinelli, P. Nelli, V. Rigato, and G. Sberveglieri, Sens. Actuators B Chem. 58, 289 (1999).CrossRefGoogle Scholar
  19. 19.
    Z. Wang, X. Zhou, Z. Li, Y. Zhuo, Y. Gao, Q. Yang, X. Li, and G. Lu, RSC Adv. 4, 23281 (2014).CrossRefGoogle Scholar
  20. 20.
    C.-S. Wu, Nanomaterials 5, 1250 (2015).CrossRefGoogle Scholar
  21. 21.
    Y. Zhu, T. Mei, Y. Wang, and Y. Qian, J. Mater. Chem. 21, 11457 (2011).CrossRefGoogle Scholar
  22. 22.
    Y.W. Jun, J.S. Choi, and J. Cheon, Angew. Chem. Int. Ed. 45, 3414 (2006).CrossRefGoogle Scholar
  23. 23.
    J. Shi, G. Hu, R. Cong, H. Bu, and N. Dai, New J. Chem. 37, 1538 (2013).CrossRefGoogle Scholar
  24. 24.
    S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, J.H. Kim, and P.S. Patil, Sens. Actuators B Chem. 240, 426 (2017).CrossRefGoogle Scholar
  25. 25.
    Y. Yu, W. Zeng, M. Xu, and X. Peng, Phys. E Low-Dimens. Syst. Nanostruct. 79, 127 (2016).CrossRefGoogle Scholar
  26. 26.
    D.S. Dalavi, R.S. Devan, R.A. Patil, R.S. Patil, Y.R. Ma, S.B. Sadale, I. Kim, J.H. Kim, and P.S. Patil, J. Mater. Chem. C 1, 3722 (2013).CrossRefGoogle Scholar
  27. 27.
    Y. Liu, L. Zhao, J. Su, M. Li, L. Guo, and A.C.S. Appl, Mater. Interfaces 7, 3532 (2015).CrossRefGoogle Scholar
  28. 28.
    J. Huang, X. Xu, C. Gu, G. Fu, W. Wang, and J. Liu, Mater. Res. Bull. 47, 3224 (2012).CrossRefGoogle Scholar
  29. 29.
    Q. Zeng, Y. Zhao, J. Zhao, X. Hao, Y. Lu, J. Guo, Y. Song, F. Gao, and Z. Huang, Cryst. Res. Technol. 48, 334 (2013).CrossRefGoogle Scholar
  30. 30.
    M.R. Alenezi, S.J. Henley, N.G. Emerson, and S.R.P. Silva, Nanoscale 6, 235 (2014).CrossRefGoogle Scholar
  31. 31.
    Z. Wang, P. Sun, T. Yang, Y. Gao, X. Li, G. Lu, and Y. Du, Sens. Actuators B Chem. 186, 734 (2013).CrossRefGoogle Scholar
  32. 32.
    C. Wang, X. Li, C. Feng, Y. Sun, and G. Lu, Sens. Actuators B Chem. 210, 75 (2015).CrossRefGoogle Scholar
  33. 33.
    S.S. Mehta, L.P. Chikhale, I.S. Mulla, and S.S. Suryavanshi, J. Mater. Sci. Mater. Electron. 28, 17227 (2017).CrossRefGoogle Scholar
  34. 34.
    S. Cao and H. Chen, J. Alloys Compd. 702, 644 (2017).CrossRefGoogle Scholar
  35. 35.
    Y.N. Rane, D.A. Shende, M.G. Raghuwanshi, A.V. Ghule, V.L. Patil, P.S. Patil, S.R. Gosavi, and N.G. Deshpande, Microchim. Acta 184, 2455 (2017).CrossRefGoogle Scholar
  36. 36.
    L.K. Sudha, S. Roy, and K.U. Rao, Int. J. Mater. Mech. Manuf. 2, 96 (2014).Google Scholar
  37. 37.
    C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, and U. Becker, J. Phys. Chem. B 110, 10430 (2006).CrossRefGoogle Scholar
  38. 38.
    S.B. Jagadale, V.L. Patil, S.A. Vanalakar, P.S. Patil, and H.P. Deshmukh, Ceram. Int. 44, 3333 (2018).CrossRefGoogle Scholar
  39. 39.
    J.-Y. Zhang and I.W. Boyd, Appl. Phys. A Mater. Sci. Process. 70, 657 (2000).Google Scholar
  40. 40.
    N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).CrossRefGoogle Scholar
  41. 41.
    T. Sahm, A. Gurlo, N. Bârsan, and U. Weimar, Sens. Actuators B Chem. 118, 78 (2006).CrossRefGoogle Scholar
  42. 42.
    S.A. Vanalakar, V.L. Patil, P.S. Patil, and J.H. Kim, New J. Chem. 42, 4232 (2018).CrossRefGoogle Scholar
  43. 43.
    D.L. Kamble, N.S. Harale, V.L. Patil, P.S. Patil, and L.D. Kadam, J. Anal. Appl. Pyrolysis 127, 38 (2017).CrossRefGoogle Scholar
  44. 44.
    D. Yan, M. Hu, S. Li, J. Liang, Y. Wu, and S. Ma, Electrochim. Acta 115, 297 (2014).CrossRefGoogle Scholar
  45. 45.
    E. Comini, Anal. Chim. Acta 568, 28 (2006).CrossRefGoogle Scholar
  46. 46.
    W. Fang, Y. Yang, H. Yu, X. Dong, T. Wang, J. Wang, Z. Liu, B. Zhao, and M. Yang, RSC Adv. 6, 106880 (2016).CrossRefGoogle Scholar
  47. 47.
    D. Meng, G. Wang, X. San, Y. Song, Y. Shen, Y. Zhang, K. Wang, and F. Meng, J. Alloys Compd. 649, 731 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • M. S. Patil
    • 1
  • V. L. Patil
    • 2
  • N. L. Tarwal
    • 2
  • D. D. More
    • 1
  • V. V. Alman
    • 1
  • L. D. Kadam
    • 3
  • P. S. Patil
    • 1
    • 2
  • J. H. Kim
    • 4
  1. 1.School of Nanoscience and BiotechnologyShivaji UniversityKolhapurIndia
  2. 2.Thin Film Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  3. 3.Solid State Physics Laboratory, Department of PhysicsYashvantrao Chavan Institute of ScienceSataraIndia
  4. 4.Department of Materials Science and EngineeringChonnam National UniversityGwangjuSouth Korea

Personalised recommendations