Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 211–230 | Cite as

Thermoelectric Coolers (TECs): From Theory to Practice

  • Tamer Guclu
  • Erdem Cuce
Article
  • 48 Downloads

Abstract

Thermoelectric coolers (TECs) are solid state units, which provide reliable energy conversion with no noise or vibration. They are also lightweight and do not include any moving parts. The current coefficient of performance (COP) range of TECs has shown a trend of improvement, and TECs have a wide range of usage areas. Within the scope of this research, TECs are comprehensively evaluated in terms of several aspects such as type, material, design, modelling, thermal performance, potential applications, economic and environmental issues. It can be achieved through the results that the COP of TECs is highly dependent on the temperature difference between hot and cold side (ΔT), and maximum COP is obtained when ΔT is close to zero. It is also observed that COP can be enhanced by more than 55% when the hot side is thermally regulated by phase change materials (PCMs) or integrated with a water cooling unit.

Keywords

Thermoelectric coolers thermoelectric material and modelling COP TECs and conventional refrigeration system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Chen, C. Wang, and C. Hung, Energy Convers. Manag. 87, 566 (2014).Google Scholar
  2. 2.
    Y.-X. Huang, X.-D. Wang, C.-H. Cheng, and D.T.-W. Lin, Energy 59, 689 (2013).Google Scholar
  3. 3.
    C.Y. Du and C. Da Wen, Int. J. Heat Mass Transf. 54, 4875 (2011).Google Scholar
  4. 4.
    J. Yu and B. Wang, Int. J. Refrig. 32, 32 (2009).Google Scholar
  5. 5.
    C.H. Cheng and S.Y. Huang, Appl. Energy 100, 326 (2012).Google Scholar
  6. 6.
    W. Zhu, Y. Deng, Y. Wang, and A. Wang, Microelectron. J. 44, 860 (2013).Google Scholar
  7. 7.
    W.H. Chen, C.Y. Liao, and C.I. Hung, Appl. Energy 89, 464 (2012).Google Scholar
  8. 8.
    S.B. Riffat and X. Ma, Int. J. Energy Res. 28, 753 (2004).Google Scholar
  9. 9.
    H.Y. Zhang, Int. J. Refrig. 33, 1187 (2010).Google Scholar
  10. 10.
    S. Lin, M. Ma, J. Wang, and J. Yu, Appl. Energy 180, 628 (2016).Google Scholar
  11. 11.
    H. Lv, X.D. Wang, J.H. Meng, T.H. Wang, and W.M. Yan, Appl. Energy 175, 285 (2016).Google Scholar
  12. 12.
    M. Ma and J. Yu, Int. J. Refrig 38, 352 (2014).Google Scholar
  13. 13.
    R.V. Rao and V. Patel, Eng. Appl. Artif. Intell. 26, 430 (2013).Google Scholar
  14. 14.
    S. Manikandan and S.C. Kaushik, Energy 100, 227 (2016).Google Scholar
  15. 15.
    G.S. Hwang, A.J. Gross, H. Kim, S.W. Lee, N. Ghafouri, B.L. Huang, C. Lawrence, C. Uher, K. Najafi, and M. Kaviany, Int. J. Heat Mass Transf. 52, 1843 (2009).Google Scholar
  16. 16.
    G. Karimi, J.R. Culham, and V. Kazerouni, Int. J. Refrig. 34, 2129 (2011).Google Scholar
  17. 17.
    S. Manikandan and S.C. Kaushik, Energy Convers. Manag. 106, 804 (2015).Google Scholar
  18. 18.
    I.-Y. Huang, J.-C. Lin, K.-D. She, M.-C. Li, J.-H. Chen, and J.-S. Kuo, Sens Actuators A Phys. 148, 176 (2008).Google Scholar
  19. 19.
    K. Park, S.W. Nam, and C.H. Lim, Intermetallics 18, 1744 (2010).Google Scholar
  20. 20.
    S.T. Han, P. Rimal, C.H. Lee, H.S. Kim, Y. Sohn, and S.J. Hong, Intermetallics 78, 42 (2016).Google Scholar
  21. 21.
    H.M. Hu, T.S. Ge, Y.J. Dai, and R.Z. Wang, Energy Convers. Manag. 103, 981 (2015).Google Scholar
  22. 22.
    S. Lin and J. Yu, Int. J. Refrig. 65, 103 (2016).Google Scholar
  23. 23.
    D. Zhao and G. Tan, Appl. Therm. Eng. 66, 15 (2014).Google Scholar
  24. 24.
    H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).Google Scholar
  25. 25.
    L.D. Zhao, B.P. Zhang, W.S. Liu, H.L. Zhang, and J.F. Li, J. Alloys Compd. 467, 91 (2009).Google Scholar
  26. 26.
    L.D. Zhao, B.P. Zhang, J.F. Li, H.L. Zhang, and W.S. Liu, Solid State Sci. 10, 651 (2008).Google Scholar
  27. 27.
    H.-S. Kim and S.-J. Hong, J. Alloys Compd. 586, 428 (2014).Google Scholar
  28. 28.
    M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, and H. Tsukamoto, J. Appl. Phys. 104, 84302 (2008).Google Scholar
  29. 29.
    Z.G. Chen, G. Hana, L. Yanga, L. Cheng, and J. Zou, Prog. Nat. Sci. Mater. Int. 22, 535 (2012).Google Scholar
  30. 30.
    Z. Chen, M.Y. Lin, G.D. Xu, S. Chen, J.H. Zhang, and M.M. Wang, J. Alloys Compd. 588, 384 (2014).Google Scholar
  31. 31.
    A.A. Usenko, D.O. Moskovskikh, M.V. Gorshenkov, A.V. Korotitskiy, S.D. Kaloshkin, A.I. Voronin, and V.V. Khovaylo, Scr. Mater. 96, 9 (2015).Google Scholar
  32. 32.
    O.J. Dura, R. Andujar, M. Falmbigl, P. Rogl, M.A. López de la Torre, and E. Bauer, J. Alloys Compd. 711, 381 (2017).Google Scholar
  33. 33.
    Y. Yin, B. Tudu, and A. Tiwari, Vacuum 146, 356 (2017).Google Scholar
  34. 34.
    G. Ding, J. Si, H. Wu, S. Yang, J. Zhao, and G. Wang, J. Alloys Compd. 662, 368 (2016).Google Scholar
  35. 35.
    S. Jo, S.H. Park, H.W. Ban, D.H. Gu, B.S. Kim, J.H. Son, H.K. Hong, Z. Lee, H.S. Han, W. Jo, J.E. Lee, and J.S. Son, J. Alloys Compd. 689, 899 (2016).Google Scholar
  36. 36.
    F.K. Butt, B. Ul Haq, S. ur Rehman, R. Ahmed, C. Cao, and S. AlFaifi, J. Alloys Compd. 715, 438 (2017).Google Scholar
  37. 37.
    R. Ovik, B.D. Long, M.C. Barma, M. Riaz, M.F.M. Sabri, S.M. Said, and R. Saidur, Renew. Sustain. Energy Rev. 64, 635 (2016).Google Scholar
  38. 38.
    S. Leblanc, S.K. Yee, M.L. Scullin, C. Dames, and K.E. Goodson, Renew. Sustain. Energy Rev. 32, 313 (2014).Google Scholar
  39. 39.
    P. Pichanusakorn and P. Bandaru, Mater. Sci. Eng. R Rep 67, 19 (2010).Google Scholar
  40. 40.
    W. Liu, Q. Zhang, K. Yin, H. Chi, X. Zhou, X. Tang, and C. Uher, J. Solid State Chem. 203, 333 (2013).Google Scholar
  41. 41.
    C. Gayner and K.K. Kar, Prog. Mater Sci. 83, 330 (2016).Google Scholar
  42. 42.
    X. Guo, J. Qin, X. Jia, H. Ma, and H. Jia, J. Alloys Compd. 705, 363 (2017).Google Scholar
  43. 43.
    H. Wu, B.Y. Chen, and H.Y. Cheng, Acta Mater. 122, 120 (2017).Google Scholar
  44. 44.
    Z.-L. Wang, T. Akao, T. Onda, and Z.-C. Chen, J. Alloys Compd. 663, 134 (2016).Google Scholar
  45. 45.
    Z. Liu, J. Mao, S. Peng, B. Zhou, W. Gao, J. Sui, Y. Pei, and Z. Ren, Mater. Today Phys. 2, 54 (2017).Google Scholar
  46. 46.
    J. Sun, J. Shuai, Z. Ren, and D.J. Singh, Mater. Today Phys. 2, 40 (2017).Google Scholar
  47. 47.
    K. Zhao, P. Qiu, Q. Song, A.B. Blichfeld, E. Eikeland, D. Ren, B. Ge, B.B. Iversen, X. Shi, and L. Chen, Mater. Today Phys. 1, 14 (2017).Google Scholar
  48. 48.
    T. Fu, X. Yue, H. Wu, C. Fu, T. Zhu, X. Liu, L. Hu, P. Ying, J. He, and X. Zhao, J. Mater. 2, 141 (2016).Google Scholar
  49. 49.
    K. Zhao, M. Guan, P. Qiu, A. Blichfeld, E. Eikeland, C. Zhu, D. Ren, F. Xu, B. Iversen, X. Shi, and L. Chen, J. Mater. Chem A. 6, 6977 (2018).Google Scholar
  50. 50.
    A.U. Khan, K. Kobayashi, D.-M. Tang, Y. Yamauchi, K. Hasegawa, M. Mitome, Y. Xue, B. Jiang, K. Tsuchiya, D. Golberg, Y. Bando, and T. Mori, Nano Energy 31, 152 (2017).Google Scholar
  51. 51.
    Z.-L. Wang, T. Araki, T. Onda, and Z.-C. Chen, Scr. Mater. 141, 89 (2017).Google Scholar
  52. 52.
    Z.L. Wang, T. Onda, Z.C. Chen, and T. Akao, Scr. Mater. 136, 111 (2017).Google Scholar
  53. 53.
    A.U. Khan, N. Vlachos, and T. Kyratsi, Scr. Mater. 69, 606 (2013).Google Scholar
  54. 54.
    S. Populoh, M.H. Aguirre, O.C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Scr. Mater. 66, 1073 (2012).Google Scholar
  55. 55.
    M. Gürth, G. Rogl, V.V. Romaka, A. Grytsiv, E. Bauer, and P. Rogl, Acta Mater. 104, 210 (2016).Google Scholar
  56. 56.
    F.L. Tan and S.C. Fok, Energy Convers. Manag. 49, 1715 (2008).Google Scholar
  57. 57.
    H. Lee, Appl. Energy 106, 79 (2013).Google Scholar
  58. 58.
    M.K. Russel, D. Ewing, and C.Y. Ching, Appl. Therm. Eng. 50, 652 (2013).Google Scholar
  59. 59.
    A. Sarkar and S.K. Mahapatra, Appl. Therm. Eng. 69, 39 (2014).Google Scholar
  60. 60.
    Y.H. Cheng and W.K. Lin, Appl. Therm. Eng. 25, 2983 (2005).Google Scholar
  61. 61.
    X.C. Xuan, Energy Convers. Manag. 44, 399 (2003).Google Scholar
  62. 62.
    H. Tan, H. Fu, and J. Yu, Appl. Therm. Eng. 123, 845 (2017).Google Scholar
  63. 63.
    Y. Pan, B. Lin, and J. Chen, Appl. Energy 84, 882 (2007).Google Scholar
  64. 64.
    B.J. Huang, C.J. Chin, and C.L. Duang, Int. J. Refrig. 23, 208 (2000).Google Scholar
  65. 65.
    J. Yu, H. Zhao, and K. Xie, Cryogenics 47, 89 (2007).Google Scholar
  66. 66.
    N. Putra, W. Sukyono, D. Johansen, and F.N. Iskandar, Cryogenics. 50, 759 (2010).Google Scholar
  67. 67.
    Y.W. Gao, H. Lv, X.D. Wang, and W.M. Yan, Int. J. Heat Mass Transf. 114, 656 (2017).Google Scholar
  68. 68.
    T.H. Wang, Q.H. Wang, C. Leng, and X.D. Wang, Appl. Energy 154, 1 (2015).Google Scholar
  69. 69.
    X.C. Xuan, K.C. Ng, C. Yap, and H.T. Chua, Energy Convers. Manag. 43, 2041 (2002).Google Scholar
  70. 70.
    X.D. Wang, Q.H. Wang, and J.L. Xu, Energy 65, 419 (2014).Google Scholar
  71. 71.
    A. Nemati, H. Nami, M. Yari, and F. Ranjbar, Int. J. Refrig. 17, 30353 (2017).Google Scholar
  72. 72.
    D. Kim, C. Lim, and Y. Kim, Energy Prod Manag. 2, 1237 (2014).Google Scholar
  73. 73.
    R.A. Khire, A. Messac, and S. Van Dessel, Int. J. Heat Mass Transf. 48, 4028 (2005).Google Scholar
  74. 74.
    M. Chen and G.J. Snyder, Int. J. Heat Mass Transf. 60, 689 (2013).Google Scholar
  75. 75.
    X. Wang, J. Yu, and M. Ma, Int. J. Heat Mass Transf. 63, 361 (2013).Google Scholar
  76. 76.
    J. Li, B. Ma, R. Wang, and L. Han, Microelectron. Reliab. 51, 2210 (2011).Google Scholar
  77. 77.
    J.-H. Meng, X.-D. Wang, and X.-X. Zhang, Appl. Energy 108, 340 (2013).Google Scholar
  78. 78.
    D. Liu, F.Y. Zhao, H.X. Yang, and G.F. Tang, Energy 83, 29 (2015).Google Scholar
  79. 79.
    L. Zhu, H. Tan, and J. Yu, Energy Convers. Manag. 76, 685 (2013).Google Scholar
  80. 80.
    M.M. Barry, K.A. Agbim, P. Rao, C.E. Clifford, B.V.K. Reddy, and M.K. Chyu, Energy 112, 388 (2016).Google Scholar
  81. 81.
    S. Göktun, Energy Sources 18, 531 (1996).Google Scholar
  82. 82.
    J.Y. Liu and C. Da Wen, Numer. Heat Transf. Part A Appl. 60, 519 (2011).Google Scholar
  83. 83.
    A. Hadidi, Appl. Therm. Eng. 123, 514 (2017).Google Scholar
  84. 84.
    L. Chen, J. Li, F. Sun, and C. Wu, Appl. Energy 85, 641 (2008).Google Scholar
  85. 85.
    Y.H. Cheng and C. Shih, Appl. Therm. Eng. 26, 937 (2006).Google Scholar
  86. 86.
    M.A. Olivares-Robles, C. Ramirez-Lopez, and F. Vazquez, Entropy 14, 1539 (2012).Google Scholar
  87. 87.
    A. Razani, T. Fraser, and C. Dodson, AIP Conf. Proc. 1434, 1899 (2012).Google Scholar
  88. 88.
    X.C. Xuan, K.C. Ng, C. Yap, and H.T. Chua, Cryogenics 42, 273 (2002).Google Scholar
  89. 89.
    F. Meng, L. Chen, and F. Sun, Math. Comput. Model. 52, 586 (2010).Google Scholar
  90. 90.
    H. Zhang, W. Kong, F. Dong, H. Xu, B. Chen, and M. Ni, Energy Convers. Manag. 148, 1382 (2017).Google Scholar
  91. 91.
    H.S. Huang, Y.C. Weng, Y.W. Chang, S.L. Chen, and M.T. Ke, Int. Commun. Heat Mass Transf. 37, 140 (2010).Google Scholar
  92. 92.
    S.A. Ali and S. Mazumder, Int. J. Heat Mass Transf. 62, 373 (2013).Google Scholar
  93. 93.
    R. Arora and R. Arora, J. Emerg. Technol. Innov. Res. 5, 820 (2018).Google Scholar
  94. 94.
    H. Nami, A. Nemati, M. Yari, and F. Ranjbar, Appl. Therm. Eng. 124, 756 (2017).Google Scholar
  95. 95.
    S. Sharma, V.K. Dwivedi, and S.N. Pandit, Int. J. Energy Res. 38, 213 (2014).Google Scholar
  96. 96.
    J. Chen, Y. Zhou, H. Wang, and J.T. Wang, Appl. Energy 73, 285 (2002).Google Scholar
  97. 97.
    S.B. Riffat and X. Ma, Appl. Therm. Eng. 23, 913 (2003).Google Scholar
  98. 98.
    S. Twaha, J. Zhu, Y. Yan, and B. Li, Renew. Sustain. Energy Rev. 65, 698 (2016).Google Scholar
  99. 99.
    R. Chein and G. Huang, Appl. Therm. Eng. 24, 2207 (2004).Google Scholar
  100. 100.
    Y.W. Chang, C.C. Chang, M.T. Ke, and S.L. Chen, Appl. Therm. Eng. 29, 2731 (2009).Google Scholar
  101. 101.
    N. Ahammed, L.G. Asirvatham, and S. Wongwises, Exp. Therm. Fluid Sci. 74, 81 (2016).Google Scholar
  102. 102.
    P. Naphon and S. Wiriyasart, Int. Commun. Heat Mass Transf. 36, 166 (2009).Google Scholar
  103. 103.
    N. Putra and F.N. Iskandar, Exp. Therm. Fluid Sci. 35, 1274 (2011).Google Scholar
  104. 104.
    C.A. Gould, N.Y.A. Shammas, S. Grainger, and I. Taylor, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 176, 316 (2011).Google Scholar
  105. 105.
    R.C. Chu, J. Electron. Packag. 126, 491 (2004).Google Scholar
  106. 106.
    L. Chen, F. Meng, and F. Sun, Cryogenics 52, 58 (2012).Google Scholar
  107. 107.
    C.F.A. Afonso, Appl. Therm. Eng. 26, 1961 (2006).Google Scholar
  108. 108.
    R.M. Dubey and A. Singh, Int. Res. J. Eng. Technol. 23, 313 (2017).Google Scholar
  109. 109.
    S.B. Riffat, S.A. Omer, and X. Ma, Renew. Energy 23, 313 (2001).Google Scholar
  110. 110.
    S. Tassou, J. Lewis, and Y. Ge, Appl. Therm. 30, 263 (2010).Google Scholar
  111. 111.
    M.K. Rawat, H. Chattopadhyay, and S. Neogi, Int. J. Emerg. Technol. Adv. Eng. 3, 362 (2013).Google Scholar
  112. 112.
    G. Min and D.M. Rowe, Appl. Energy 83, 133 (2006).Google Scholar
  113. 113.
    S.D. Patil and K.D. Devade, Ijmter. 2, 118 (2015).Google Scholar
  114. 114.
    S. Jugsujinda, A. Vora-Ud, and T. Seetawan, Proc. Eng. 8, 154 (2011).Google Scholar
  115. 115.
    S. Palaniappan and B. Palanisamy, Proc. Eng. 64, 1056 (2013).Google Scholar
  116. 116.
    S.A. Abdul-Wahab, A. Elkamel, A.M. Al-Damkhi, I.A. Al-Habsi, H.S. Al Rubai’ey’, A.K. Al-Battashi, A.R. Al-Tamimi, K.H. Al-Mamari, and M.U. Chutani, Renew. Energy 34, 30 (2009).Google Scholar
  117. 117.
    Y.J. Dai, R.Z. Wang, and L. Ni, Sol. Energy Mater. Sol. Cells 77, 377 (2003).Google Scholar
  118. 118.
    J.G. Vián and D. Astrain, Appl. Therm. Eng. 29, 1935 (2009).Google Scholar
  119. 119.
    D. Astrain, J.G. Vián, and J. Albizua, Appl. Therm. Eng. 25, 3149 (2005).Google Scholar
  120. 120.
    A. Martinez, D. Astrain, A. Rodriguez, and P. Aranguren, Appl. Therm. Eng. 95, 339 (2016).Google Scholar
  121. 121.
    D. Astrain, P. Aranguren, A. Martínez, A. Rodríguez, and M.G. Pérez, Appl. Therm. Eng. 103, 1289 (2016).Google Scholar
  122. 122.
    C.J.L. Hermes and J.R. Barbosa, Appl. Energy 91, 51 (2012).Google Scholar
  123. 123.
    F. Jomehzadeh, P. Nejat, J.K. Calautit, M.B.M. Yusof, S.A. Zaki, B.R. Hughes, and M.N.A.W.M. Yazid, Renew. Sustain. Energy Rev. 70, 736 (2017).Google Scholar
  124. 124.
    A. Aflaki, N. Mahyuddin, Z. Al-Cheikh Mahmoud, and M.R. Baharum, Energy Build. 101, 153 (2015).Google Scholar
  125. 125.
    D. Ürge-Vorsatza, L. Cabeza, S. Serrano, C. Barreneche, and K. Petrichenko, Renew. Sustain. Energy Rev. 41, 85 (2015).Google Scholar
  126. 126.
    T. Wang, G. Foliente, X. Song, J. Xue, and D. Fang, Renew. Sustain. Energy Rev. 31, 520 (2014).Google Scholar
  127. 127.
    U.S. Environmental Protection AgencyGoogle Scholar
  128. 128.
    K. Irshad, K. Habib, F. Basrawi, N. Thirumalaiswamy, R. Saidur, and B.B. Saha, Appl. Therm. Eng. 91, 1141 (2015).Google Scholar
  129. 129.
    L. Shen, F. Xiao, H. Chen, and S. Wang, Energy Build. 59, 123 (2013).Google Scholar
  130. 130.
    S. Manikandan, S.C. Kaushik, and R. Yang, Energy Convers. Manag. 140, 145 (2017).Google Scholar
  131. 131.
    M. Gillott, L. Jiang, and S. Riffat, Int. J. Energy Res. 34, 776 (2010).Google Scholar
  132. 132.
    G. Tan and D. Zhao, Appl. Therm. Eng. 86, 187 (2015).Google Scholar
  133. 133.
    T. Han, G. Gong, Z. Liu, and L. Zhang, Appl. Therm. Eng. 67, 529 (2014).Google Scholar
  134. 134.
    H. Sadighi, S. Jafarmadar, S. Khalilarya, and A. Moosavi, Appl. Energy 181, 357 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of BayburtBayburtTurkey
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringRecep Tayyip Erdogan UniversityRizeTurkey

Personalised recommendations