Journal of Electronic Materials

, Volume 48, Issue 1, pp 589–595 | Cite as

Enhanced Gas-Sensing Response of Zinc Oxide Nanorods Synthesized via Hydrothermal Route for Nitrogen Dioxide Gas

  • S. A. VanalakarEmail author
  • M. G. Gang
  • V. L. Patil
  • T. D. Dongale
  • P. S. Patil
  • J. H. KimEmail author


In recent years, advanced material processing techniques have allowed scientists to research and document the properties of nanostructured metal oxides. One such material system, zinc oxide (ZnO), has emerged as a favorable option for a multitude of applications. In this study, thin films of ZnO with nanorod-like architectures were hydrothermally formed on a glass substrate and their physical and chemical properties were thoroughly characterized. X-ray diffraction confirmed the wurtzite structure and a scanning electron microscope was used to verify the vertical alignment of the rods. Defects due to the high oxygen vacancy concentration were revealed through photoluminescence studies. The high surface area of the nanorods works in conjunction with these defects and an optimal inter-rod spacing creates conditions for effective gas adsorption and diffusion. With this in mind, the nanorods were used to fabricate a gas sensor which demonstrated excellent NO2 sensitivity and selectivity at a relatively low operating temperature.


ZnO nanorod thin film hydrothermal route NO2 gas sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Human Resources Development Program (no. 20164030201310) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korea Government Ministry of Trade, Industry and Energy. This research is partially funded under the project entitled ‘Synthesis and characterization of nanostructured metal oxides for gas sensor applications’ (No. SR/FTP/PS-083/2012) with a grant from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, India.


  1. 1.
    G. Lawrence, P. Kalimuthu, M. Benzigar, K.J. Shelat, K.S. Lakhi, D.-H. Park, Q. Ji, K. Ariga, P.V. Bernhardt, and A. Vinu, Adv. Mater. 29, 1702295 (2017).CrossRefGoogle Scholar
  2. 2.
    K. Hanabusa, S. Takata, M. Fujisaki, Y. Nomura, and M. Suzuki, Bull. Chem. Soc. Jpn. 89, 1391 (2016).CrossRefGoogle Scholar
  3. 3.
    I. Osica, G. Imamura, K. Shiba, Q. Ji, L.K. Shrestha, J.P. Hill, K.J. Kurzydłowski, G. Yoshikawa, K. Ariga, and A.C.S. Appl, Mater. Interfaces 9, 9945 (2017).CrossRefGoogle Scholar
  4. 4.
    S. Yang, C. Jiang, and S. Wei, Appl. Phys. Rev. 4, 021304 (2017).CrossRefGoogle Scholar
  5. 5.
    S.P. Patil, V.L. Patil, S.S. Shendage, N.S. Harale, S.A. Vanalakar, J.H. Kim, and P.S. Patil, Ceram. Int. 42, 16160 (2016).CrossRefGoogle Scholar
  6. 6.
    S.B. Jagadale, V.L. Patil, S.A. Vanalakar, P.S. Patil, and H.P. Deshmukh, Ceram. Int. 44, 3333 (2018).CrossRefGoogle Scholar
  7. 7.
    C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Sensors 10, 2088 (2010).CrossRefGoogle Scholar
  8. 8.
    S. Das and V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014).CrossRefGoogle Scholar
  9. 9.
    S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, J.H. Kim, and P.S. Patil, Sens. Actuators B Chem. 240, 426 (2017).CrossRefGoogle Scholar
  10. 10.
    S.A. Vanalakar, V.L. Patil, N.S. Harale, S.A. Vhanalakar, M.G. Gang, J.Y. Kim, P.S. Patil, and J.H. Kim, Sens. Actuators B Chem. 221, 1195 (2015).CrossRefGoogle Scholar
  11. 11.
    A. Menzel, K. Subannajui, F. Güder, D. Moser, O. Paul, and M. Zacharias, Adv. Funct. Mater. 21, 4342 (2011).CrossRefGoogle Scholar
  12. 12.
    E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, Appl. Phys. A 96, 197 (2009).CrossRefGoogle Scholar
  13. 13.
    S.A. Vanalakar, R.C. Pawar, M.P. Suryawanshi, S.S. Mali, D.S. Dalavi, A.V. Moholkar, K.U. Sim, Y.B. Kown, J.H. Kim, and P.S. Patil, Mater. Lett. 65, 548 (2011).CrossRefGoogle Scholar
  14. 14.
    S.A. Vanalakar, S.S. Mali, R.C. Pawar, D.S. Dalavi, A.V. Mohalkar, H.P. Deshamukh, and P.S. Patil, Ceram. Int. 38, 6461 (2012).CrossRefGoogle Scholar
  15. 15.
    R. Kumar, O.A. Dossary, G. Kumar, and A. Umar, Nano-Micro Lett. 7, 97 (2015).CrossRefGoogle Scholar
  16. 16.
    V.L. Patil, S.S. Kumbhar, S.A. Vanalakar, N.L. Tarwal, S.S. Mali, J.H. Kim, and P.S. Patil, New J. Chem. 42, 13573 (2018).CrossRefGoogle Scholar
  17. 17.
    A.N. Afaah, Z. Khusaimi, and M. Rusop, Adv. Mater. Res. 667, 329 (2013).CrossRefGoogle Scholar
  18. 18.
    A.I. Hochbaum and P. Yang, Chem. Rev. 110, 527 (2010).CrossRefGoogle Scholar
  19. 19.
    S.A. Phaltane, S.A. Vanalakar, T.S. Bhat, P.S. Patil, S.D. Sartale, and L.D. Kadam, J. Mater. Sci. Mater. Electron. 28, 8186 (2017).CrossRefGoogle Scholar
  20. 20.
    P.N. Bhosale, V.V. Kondalkar, R.M. Mane, S. Choudhury, and K.V. Khot, J. Nanomed. Nanotechnol. 6, 1 (2015).Google Scholar
  21. 21.
    S.A. Vanalakar, G.L. Agwane, M.G. Gang, P.S. Patil, J.H. Kim, and J.Y. Kim, Phys. Status Solidi C 12, 500 (2015).CrossRefGoogle Scholar
  22. 22.
    Y.B. Kwon, S.W. Shin, H.K. Lee, J.Y. Lee, J.H. Moon, and J.H. Kim, Curr. Appl. Phys. 11, 197 (2011).CrossRefGoogle Scholar
  23. 23.
    K.V. Gurav, M.G. Gang, S.W. Shin, U.M. Patil, P.R. Deshmukh, G.L. Agawane, M.P. Suryawanshi, S.M. Pawar, P.S. Patil, C.D. Lokhande, and J.H. Kim, Sens. Actuators B Chem. 190, 439 (2014).CrossRefGoogle Scholar
  24. 24.
    L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett. 5, 1231 (2005).CrossRefGoogle Scholar
  25. 25.
    N. Qin, Q. Xiang, H. Zhao, J. Zhang, and J. Xu, CrystEngComm 16, 7062 (2014).CrossRefGoogle Scholar
  26. 26.
    S.A. Vanalakar, S.S. Mali, M.P. Suryawanshi, N.L. Tarwal, P.R. Jadhav, G.L. Agawane, K.V. Gurav, A.S. Kamble, S.W. Shin, A.V. Moholkar, J.Y. Kim, J.H. Kim, and P.S. Patil, Opt. Mater. 37, 766 (2014).CrossRefGoogle Scholar
  27. 27.
    C. Tsakonas, W. Cranton, F. Li, K. Abusabee, and A. Flewitt, J. Phys. D Appl. Phys. 46, 095305 (2013).CrossRefGoogle Scholar
  28. 28.
    J.H. Lin, R.A. Patil, R.S. Devan, Z.A. Liu, Y.P. Wang, C.H. Ho, Y. Liou, and Y.R. Ma, Sci. Rep. 4, 6967 (2014).CrossRefGoogle Scholar
  29. 29.
    N.L. Tarwal, P.R. Jadhav, S.A. Vanalakar, S.S. Kalagi, R.C. Pawar, J.S. Shaikh, S.S. Mali, D.S. Dalavi, P.S. Shinde, and P.S. Patil, Powder Technol. 208, 185 (2011).CrossRefGoogle Scholar
  30. 30.
    V.L. Patil, S.A. Vanalakar, A.S. Kamble, S.S. Shendage, J.H. Kim, and P.S. Patil, RSC Adv. 6, 90916 (2016).CrossRefGoogle Scholar
  31. 31.
    A. Sharma, M. Tomar, and V. Gupta, Sens. Actuators B Chem. 156, 743 (2011).CrossRefGoogle Scholar
  32. 32.
    V.N. Mishra and P. Agarwal, Microelectron. J. 29, 861 (1998).CrossRefGoogle Scholar
  33. 33.
    S.K. Shaikh, V.V. Ganbavle, S.I. Inamdar, and K.Y. Rajpure, RSC Adv. 6, 25641 (2016).CrossRefGoogle Scholar
  34. 34.
    X. Wang, F. Sun, Y. Duan, Z. Yin, W. Luo, Y. Huang, and J. Chen, J. Mater. Chem. C 3, 11397 (2015).CrossRefGoogle Scholar
  35. 35.
    P. Rai, Y.S. Kim, H.M. Song, M.K. Song, and Y.T. Yu, Sens. Actuators B Chem. 165, 133 (2012).CrossRefGoogle Scholar
  36. 36.
    V.L. Patil, S.A. Vanalakar, P.S. Patil, and J.H. Kim, Sens. Actuators B Chem. 239, 1185 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsKarmaveer Hire Arts, Science, Commerce and Education CollegeGargotiIndia
  2. 2.Department of Materials Science and EngineeringChonnam National UniversityGwangjuKorea
  3. 3.School of Nanoscience and BiotechnologyShivaji UniversityKolhapurIndia
  4. 4.Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations