Advertisement

Journal of Electronic Materials

, Volume 48, Issue 2, pp 799–805 | Cite as

Modelling of Freestanding Membrane-Supported Superconducting Al/Ti Bilayer Transition Edge Sensor Bolometer

  • Kamal Ahmad
  • Jie Liu
  • Gang Li
  • Jianshe Liu
  • Wei Chen
Article
  • 16 Downloads

Abstract

The aim of this research work was to model the behaviour of a transition edge sensor (TES) bolometer by applying curve fitting methodology on empirical data. Data obtained from the experiments were used to plot characteristic curves to find resistance–temperature (R–T) and current–voltage (I–V) relations. The measurements were taken by using a cryogenic-free 3He refrigerator with a least temperature of 320 mK. Least-squares curve fitting technique was used to devise the equations of the experimentally obtained data. Similarly, the empirical data and estimated curves were validated using the parameters of R-squared, sum of squares due to error (SSE), adjusted R-squared, and root-mean-squared error (RMSE). By comparing the plot of the empirical data and estimated behaviour curves showed high degree of similarity, and hence it was established that these equations could be used to estimate the bolometer’s operating behaviour for different ambient conditions with minimal percentage error. We also studied etched (TES device suspended on SiN) and non-etched (Si substrate based device) samples of bolometers. It was concluded that bolometers made up of etched sample of TES are appropriate for use in millimetre and submillimeter waves, especially for cosmic microwave background polarization detection.

Keywords

Transition edge sensor bolometer SQUID sum of squared error (SSE) R-squared R-squared error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The National Natural Science Foundation of China supported this work. The State Key Program supports the project for Basic Research of China.

References

  1. 1.
    A.J. Walton, W. Parkes, J.G. Terry, C. Dunare, J.T.M. Stevenson, A.M. Gundlach, G.C. Hilton, K.D. Irwin, J.N. Ullom, W.S. Holland, W.D. Duncan, M.D. Audley, P.A.R. Ade, R.V. Sudiwala, and E. Schulte, IEEE Proc. Sci. Meas. Technol. 110 (2004).Google Scholar
  2. 2.
    K.D. Irwin and G.C. Hilton, Appl. Phys. 63, 152 (2005).Google Scholar
  3. 3.
    K.D. Irwin, G.C. Hilton, and D.A. Wollman, Appl. Phys. Lett. 69, 1945 (1996).CrossRefGoogle Scholar
  4. 4.
    D.A. Wollman, S.W. Nam, D.E. Newbury, G.C. Hilton, K.D. Irwin, N.F. Bergren, S. Deiker, D.A. Rudman, and J.M. Martinis, Nucl. Instr. Meth. A 444, 145 (2000).CrossRefGoogle Scholar
  5. 5.
    B. Cabrera, R. Clarke, A. Miller, S.W. Nam, R. Romani, T. Saab, and B. Young, Phys. B 280, 509 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Krauss and F. Wilczek, Phys. Rev. Lett. 55, 25 (1985).CrossRefGoogle Scholar
  7. 7.
    K. Tanakaa, A. Odawara, S. Bandou, A. Nagata, S. Nakayama, K. Chinone, A. Yasaka, Y. Koike, and S. Iijima, Physica C 469, 881 (2009).CrossRefGoogle Scholar
  8. 8.
    Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, Sci. China Bull. 59, 2292 (2014).CrossRefGoogle Scholar
  9. 9.
    A.E. Lita, A.J. Miller, and S.W. Nam, Optic. Exp. 16, 3032 (2008).CrossRefGoogle Scholar
  10. 10.
    K. Arnold, Design and deployment of the POLARBEAR cosmic microwave background polarization experiment. Ph.D. Thesis. California: University of California, Berkeley (2010).Google Scholar
  11. 11.
    H.J. Li, Y.W. Wang, and L.F. Wei, Chin. Sci. Bull. 58, 2413 (2013).CrossRefGoogle Scholar
  12. 12.
    A.T. Lee, P.L. Richards, and S.W. Nam, Appl. Phys. Lett. 69, 1801 (1996).CrossRefGoogle Scholar
  13. 13.
    L. Dunlop, D.M. Glowacka, D.J. Goldie, in Proceeding SPIE, p. 6275 (2006)Google Scholar
  14. 14.
    J.A. Burney, Transition-edge sensor imaging arrays for astrophysics applications. Ph.D. Thesis, Stanford University (2007).Google Scholar
  15. 15.
    A.J. Miller, Development of a broadband optical spectrophotometer using superconducting transition-edge sensors. Ph.D. Thesis, Stanford University (2001).Google Scholar
  16. 16.
    M. Ukibe, M. Koyanagi, M. Ohkubo, H. Pressler, and N. Kobayashi, Nucl. Instr. Meth. A 436, 256 (1999).CrossRefGoogle Scholar
  17. 17.
    E. Taralli, C. Portesi, R. Rocci, M. Rajteri, and E. Monticone, IEEE Trans. Appl. Supercond. 19, 493 (2009).CrossRefGoogle Scholar
  18. 18.
    P. Roth, G.W. Fraser, A.D. Holland, and S. Trowell, Nucl. Instrum. Meth. A 443, 351 (2000).CrossRefGoogle Scholar
  19. 19.
    A.R. Gonzalez, J. Anguita, and F. Briones, Low Temp. Phys. 151, 239 (2008).CrossRefGoogle Scholar
  20. 20.
    K. Arnold, P.A.R. Ade, A.E. Anthony, in Proceeding SPIE, p. 11 (2010).Google Scholar
  21. 21.
    T.M. Lanting and H.M. Cho, J. Clarke. Appl. Phys. Lett. 86, 112511 (2016).CrossRefGoogle Scholar
  22. 22.
    A.T. Crites, B.A. Benson, and L. Bleem, Progress on ANL/KICP bolometers for SPTpol. IEEE Trans. Appl. Supercond. 21, 184 (2011).CrossRefGoogle Scholar
  23. 23.
    C.J. Kircher, Phys. Rev. 168, 437 (1968).  https://doi.org/10.1103/PhysRev.168.437.CrossRefGoogle Scholar
  24. 24.
    M. Tinkham and V. Emery, Introduction to Superconductivity, 2nd ed. (New York: Dover Publications, 1996), p. 43.Google Scholar
  25. 25.
    B. Westbrook, A. Lee, and X. Meng, Low Temp. Phys. 167, 885 (2012).CrossRefGoogle Scholar
  26. 26.
    J.A. Chervenak, K.D. Irwin, and E.N. Grossman, Appl. Phys. Lett. 74, 4043 (1999).CrossRefGoogle Scholar
  27. 27.
    Q. Zhang, G. He, and W. Dong, in Proceeding of 10th International Workshop on Low Temperature Electronics, p. 70 (2013).Google Scholar
  28. 28.
    Q. Zhang, W. Dong, and T. Wang, Chin. Low Temp. Phys. 36, 7 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Tsinghua National Laboratory for Information Science and Technology, Department of Microelectronics and Nanoelectronics, Institute of MicroelectronicsTsinghua UniversityBeijingChina

Personalised recommendations