Journal of Electronic Materials

, Volume 48, Issue 1, pp 503–508 | Cite as

Effect of Silver and Iodine Co-doping on the Thermoelectric Properties of n-Type Bi2S3

  • Junnan Yan
  • Jian Yang
  • Bangzhi Ge
  • Guiwu LiuEmail author
  • Zhongqi Shi
  • Zhewen Duan
  • Guanjun QiaoEmail author


Bi2S3 is a promising thermoelectric material due to its low thermal conductivity. However, the low electrical conductivity has become an obstacle for its higher thermoelectric properties. To overcome this, on the basis of 1 mol.% BiI3 doping, Bi2S3 polycrystalline samples doped with various silver (Ag) concentrations were successfully prepared by melting combined with spark plasma sintering (SPS) to improve thermoelectric properties. The variation of lattice parameters were analyzed using x-ray diffraction, and electrical and thermal properties were investigated in the temperature range from 300 K to 723 K. The Ag and iodine (I) co-doping plays an important role in enhancing the electrical conductivity and maintaining a high Seebeck coefficient simultaneously. An ideal power factor of 3.95 μW cm−1 K−2 is obtained for the Ag0.0075Bi2S3 sample at 723 K. Meanwhile, the thermal conductivity is also reduced. As a result, a high thermoelectric figure-of-merit (ZT) of 0.62 is achieved, which is four times higher than that of pristine Bi2S3 at the same temperature.


Bi2S3 thermoelectric properties electrical conductivity co-doping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51572111), the National Key Research and Development Program of China (2017YFB0310402), the Six Talent Peaks Project of Jiangsu Province (TD-XCL-004), the 333 talents project of Jiangsu province (BRA2017387), the Innovation/Entrepreneurship Program of Jiangsu Province ([2015]26), and the Qing Lan Project of Jiangsu Province ([2016]15).


  1. 1.
    M.G. Kanatzidis, Chem. Mater. 22, 648 (2009).CrossRefGoogle Scholar
  2. 2.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  3. 3.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  4. 4.
    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).CrossRefGoogle Scholar
  5. 5.
    J. Yang, X.Z. Zhang, B.Z. Ge, J.N. Yan, G.W. Liu, Z.Q. Shi, and G.J. Qiao, Ceram. Int. 43, 15275 (2017).CrossRefGoogle Scholar
  6. 6.
    M. Zebarjadi, B. Liao, K. Esfarjani, M. Dresselhaus, and G. Chen, Adv. Mater. 25, 1577 (2013).CrossRefGoogle Scholar
  7. 7.
    J. Yang, G.W. Liu, J.N. Yan, X.Z. Zhang, Z.Q. Shi, and G.J. Qiao, J. Alloys Compd. 728, 351 (2017).CrossRefGoogle Scholar
  8. 8.
    J. Yang, G.W. Liu, Z.Q. Shi, J.P. Lin, X. Ma, Z.W. Xu, and G.J. Qiao, Mater. Today Energy 3, 72 (2017).CrossRefGoogle Scholar
  9. 9.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, and G.J. Snyder, Science 554, 321 (2008).Google Scholar
  10. 10.
    Y. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, and G.J. Snyder, Adv. Funct. Mater. 21, 241 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Soni, Y.Y. Zhao, L.G. Yu, M.K.K. Aik, M.S. Dresselhaus, and Q.H. Xiong, Nano Lett. 12, 1203 (2012).CrossRefGoogle Scholar
  12. 12.
    K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, and M.G. Kanatzidis, Nature 489, 414 (2012).CrossRefGoogle Scholar
  13. 13.
    G.Q. Zhang, B. Kirk, L.A. Jauregui, H.R. Yang, X.F. Xu, Y.P. Chen, and Y. Wu, Nano Lett. 12, 56 (2012).CrossRefGoogle Scholar
  14. 14.
    S.N. Girard, J.Q. He, X.Y. Zhou, D. Shoemarker, C.M. Christopher, C. Uher, V.P. Dravid, J.P. Heremans, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 16588 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. He, T. Day, T.S. Zhang, H.L. Liu, X. Shi, L.D. Chen, and G.J. Snyder, Adv. Mater. 26, 3974 (2014).CrossRefGoogle Scholar
  16. 16.
    Z.H. Ge, B.P. Zhang, Y.X. Chen, Z.X. Yu, Y. Liu, and J.F. Li, Chem. Commun. 47, 12697 (2011).CrossRefGoogle Scholar
  17. 17.
    G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, and G. Chen, NanoLett. 8, 4670 (2008).CrossRefGoogle Scholar
  18. 18.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).CrossRefGoogle Scholar
  19. 19.
    N. Tsujii and T. Mori, Appl. Phys. Express 6, 043001 (2013).CrossRefGoogle Scholar
  20. 20.
    J. Li, Q. Tan, and J.F. Li, J. Alloys Compd. 551, 143 (2013).CrossRefGoogle Scholar
  21. 21.
    T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).CrossRefGoogle Scholar
  22. 22.
    P. Boudjouk, M.P. Remington, D.G. Grier, B.R. Jarabek, and G.J. McCarthy, Inorg. Chem. 37, 3538 (2008).CrossRefGoogle Scholar
  23. 23.
    Z.H. Ge, B.P. Zhang, Y. Liu, and J.F. Li, Phys. Chem. Chem. Phys. 14, 4475 (2012).CrossRefGoogle Scholar
  24. 24.
    S.C. Liufu, L.D. Chen, D. Yao, and C.F. Wang, Appl. Phys. Lett. 90, 112106 (2007).CrossRefGoogle Scholar
  25. 25.
    H. Mizoguchi, H. Hosono, N. Ueda, and H. Kawazoe, J. Appl. Phys. 78, 1376 (1995).CrossRefGoogle Scholar
  26. 26.
    Z.H. Ge, B.P. Zhang, Y.Q. Yu, and P.P. Shang, J. Alloys Compd. 514, 205 (2012).CrossRefGoogle Scholar
  27. 27.
    Y.Q. Yu, B.P. Zhang, Z.H. Ge, P.P. Shang, and Y.X. Chen, Mater. Chem. Phys. 131, 216 (2011).CrossRefGoogle Scholar
  28. 28.
    Tarachand, V. Sharma, R. Bhatt, V. Ganesan, and G.S. Okram, Nano Res. 9, 3291 (2016).CrossRefGoogle Scholar
  29. 29.
    F. Han, H. Liu, C.D. Malliakas, M. Sturza, D.Y. Chung, X. Wan, and M.G. Kanatzidis, Inorg. Chem. 55, 3547 (2016).CrossRefGoogle Scholar
  30. 30.
    P. Tomes, X. Yan, R. Kastner, R. Svagera, M. Waas, J. Eilertsen, A. Weidenkaff, and S. Paschen, J. Alloys Compd. 654, 300 (2016).CrossRefGoogle Scholar
  31. 31.
    K. Biswas, L.D. Zhao, and M.G. Kanatzidis, Adv. Energy Mater. 2, 634 (2012).CrossRefGoogle Scholar
  32. 32.
    L.D. Zhao, B.P. Zhang, J.F. Li, H.L. Zhang, and W.S. Liu, Solid State Sci. 10, 651 (2008).CrossRefGoogle Scholar
  33. 33.
    H.W. Zhao, X.X. Xu, C. Li, R. Tian, R.Z. Zhang, R. Huang, Y.N. Lyu, D.X. Li, X.H. Hu, L. Pan, and Y.F. Wang, J. Mater. Chem. A 5, 23267 (2017).CrossRefGoogle Scholar
  34. 34.
    G.P. Srivastava, Rep. Prog. Phys. 78, 026501 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringJiangsu UniversityZhenjiangChina
  2. 2.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong University Xi’anChina

Personalised recommendations