Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 571–582 | Cite as

Microstructural Characterization of Defects and Chemical Etching for HgCdSe/ZnTe/Si (211) Heterostructures

  • M. Vaghayenegar
  • K. J. Doyle
  • S. Trivedi
  • P. Wijewarnasuriya
  • David J. Smith
Article
  • 14 Downloads

Abstract

In this work, transmission electron microscopy has been used to investigate HgCdSe/ZnTe/Si (211) heterostructures grown by molecular beam epitaxy and to study the effects of chemical etchants for measurements of defect density in the HgCdSe epilayers. Both ZnTe/Si and HgCdSe/ZnTe interfaces were decorated with {111}-type stacking faults inclined at angles of ∼ 19° or ∼ 90° with respect to the interface plane. Similar stacking faults were also present in the upper regions of the HgCdSe films. High-resolution imaging and Fourier image analysis revealed dislocations, mostly with \( \frac{a}{3}\left\langle\bar{1}11\right\rangle \) Burgers vector, at both ZnTe/Si and HgCdSe/ZnTe interfaces. Etching solutions based on different combinations of nitric acid, hydrochloric acid and lactic acid were tried in attempts to identify an etchant that provided one-to-one correspondence between etch pits and defects in the HgCdSe layer. Focused-ion-beam milling and transmission electron microscopy were used to prepare site-specific cross-section samples from across the etch pits. However, many defects in regions surrounding the etch pits were unaffected by the various different etchants.

Keywords

HgCdSe (211) ZnTe alternative substrates dislocations etch pits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Wijewarnasuriya, Y. Chen, G. Brill, N. Dhar, D. Benson, L. Bubulac, and D. Edwall, J. Electron. Mater. 39, 1110 (2010).CrossRefGoogle Scholar
  2. 2.
    M. Vaghayenegar, R.N. Jacobs, J.D. Benson, A.J. Stoltz, L.A. Almeida, and D.J. Smith, J. Electron. Mater. 46, 5007 (2017).CrossRefGoogle Scholar
  3. 3.
    J. Chu and A. Sher, in Physics and Properties of Narrow Gap Semiconductors (Springer, 2008), Chapter 1, p. 7.Google Scholar
  4. 4.
    P. Capper, in Narrow-gap II–VI Compounds for Optoelectronic and Electromagnetic Applications (Chapman and Hall, London, 1997), Chapter 6, p. 204.Google Scholar
  5. 5.
    R.N. Andrews, F.R. Szofran, and S.L. Lehoczky, J. Cryst. Growth 92, 445 (1988).CrossRefGoogle Scholar
  6. 6.
    C.R. Whitsett, J.G. Broerman, and C.J. Summers, in Semiconductors and Semimetals (1988), vol. 18, Chapter 2, p. 54.Google Scholar
  7. 7.
    G. Brill, Y. Chen, and P. Wijewarnasuriya, J. Electron. Mater. 8, 1679 (2011).CrossRefGoogle Scholar
  8. 8.
    J.W. Garland and S. Sivananthan, in Springer Handbook of Crystal Growth, ed. by G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley (Springer, Heidelberg, 2010), Chapter 32, p. 1076.Google Scholar
  9. 9.
    K. Doyle, C.H. Swartz, J.H. Dinan, T.H. Myers, G. Brill, Y. Chen, B.L. Vanmil, and P. Wijewarnasuriya, J. Vac. Sci. Technol. B 31, 03C124 (2013).CrossRefGoogle Scholar
  10. 10.
    W.F. Zhao, G. Brill, Y. Chen, and D.J. Smith, J. Electron. Mater. 41, 2852 (2012).CrossRefGoogle Scholar
  11. 11.
    K. Doyle, Development of Hg 1−x Cd x Se for 3rd Generation Focal Plane Arrays (Morgantown: West Virginia University, 2013).Google Scholar
  12. 12.
    S. Farrell, M.V. Rao, G. Brill, Y. Chen, P. Wijewarnasuriya, N. Dhar, J.D. Benson, and K. Harris, J. Electron. Mater. 42, 3097 (2013).CrossRefGoogle Scholar
  13. 13.
    Y. Chen, S. Simingalam, G. Brill, P. Wijewarnasuriya, N. Dhar, J.J. Kim, and D.J. Smith, J. Electron. Mater. 41, 2917 (2012).CrossRefGoogle Scholar
  14. 14.
    P. Walker and W.H. Tarn, CRC Handbook of Metal Etchants (Boca Raton: CRC Press LLC, 1991), pp. 221–809.Google Scholar
  15. 15.
    K. Doyle and S. Trivedi, Dislocation Etching Solutions for Mercury Cadmium Selenide ARL-CR-0744 (2014).Google Scholar
  16. 16.
    S.Y. Woo, G.A. Devenyi, S. Ghanad-Tavakoli, R.N. Kleiman, J.S. Preston, and G.A. Botton, Appl. Phys. Lett. 102, 132103 (2013).CrossRefGoogle Scholar
  17. 17.
    X.J. Wang, Y. Chang, C.R. Becker, C.H. Grein, S. Sivananthan, and R. Kodama, J. Electron. Mater. 40, 1860 (2011).CrossRefGoogle Scholar
  18. 18.
    D.J. Smith, S.C.Y. Tsen, D. Chandrasekhar, P.A. Crozier, S. Rujirawat, G. Brill, Y.P. Chen, R. Sporken, and S. Sivananthan, Mater. Sci. Eng. B 77, 93 (2000).CrossRefGoogle Scholar
  19. 19.
    Y.A.R. Dasilva, R. Kozac, R. Erni, and M.D. Rossel, Ultramicroscopy 176, 11 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • M. Vaghayenegar
    • 1
  • K. J. Doyle
    • 2
  • S. Trivedi
    • 2
  • P. Wijewarnasuriya
    • 2
  • David J. Smith
    • 3
  1. 1.School of Engineering for Matter, Transport and EnergyArizona State UniversityTempeUSA
  2. 2.U.S. Army Research Laboratory—Sensors and Electronic Devices DirectorateAdelphiUSA
  3. 3.Department of PhysicsArizona State UniversityTempeUSA

Personalised recommendations