Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 483–493 | Cite as

The Structural, Electronic, and Magnetic Properties of Cobalt Disulfide Doped with Oxygen, Selenium, or Tellurium

  • Zhong-Ying Feng
  • Yan Yang
  • Jian-Min Zhang
Article
  • 42 Downloads

Abstract

The structural, electronic, and magnetic properties of cobalt disulfide (CoS2) doped with oxygen (O), selenium (Se), or tellurium (Te) were investigated based on the spin-polarized first-principles calculations. Both the lattice constant and volume for CoO0.25S1.75 were smaller while those for CoSe0.25S1.75 and CoTe0.25S1.75 were larger than the corresponding values for CoS2. Both CoS2 and CoO0.25S1.75 were quasi-half-metallic, and both CoSe0.25S1.75 and CoTe0.25S1.75 were quasi-metallic. For CoS2, CoSe0.25S1.75, and CoTe0.25S1.75, the valence band maximums (VBMs) were contributed by Co-3d(t2g) states near the X-point, and the conduction band minimums (CBMs) were contributed by S-3p states at the Γ-point. For CoO0.25S1.75, the VBM was contributed by Co-3d(t2g) states at the M-point, and the CBM was contributed by Co-3d(eg) states near the R-point. Both O–S and Te–S dimers were strongly polarized, and the Se–S dimer was slightly polarized. CoS2 and CoX0.25S1.75 (X = O, Se, or Te) were magnetic, and Co atoms favoured ferromagnetic interaction. Except quasi-HM CoO0.25S1.75, quasi-metallic CoX0.25S1.75, CoX0.0625S1.9375, CoX0.03125S1.96875, and perfect metallic CoX0.25S1.75*, CoX0.125S1.875, were expected more suitable for use in supercapacitor and electrocatalyst.

Keywords

CoS2 CoX0.25S1.75 structural property electronic property magnetic property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to acknowledge the Fundamental Research Funds for the Central Universities (Grant Nos. 2017TS004, 2017TS006 and GK201704005) for providing financial support for this research.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    R. Sun, M.K.Y. Chan, and G. Ceder, Phys. Rev. B 83, 235311 (2011).CrossRefGoogle Scholar
  2. 2.
    Y. Ziat, A. Abbassi, A. Slassi, M. Hammi, A.A. Raiss, O.E. Rhazouani, M. Houmad, S. Echihi, and A.E. Kenz, Opt. Quant. Electron. 48, 511 (2016).CrossRefGoogle Scholar
  3. 3.
    L. Vadkhiya and B.L. Ahuja, J. Alloys Compd. 509, 3042 (2011).CrossRefGoogle Scholar
  4. 4.
    H.S. Jarrett, W.H. Cloud, R.J. Bouchard, S.R. Butler, C.G. Frederick, and J.L. Gillson, Phys. Rev. Lett. 21, 617 (1968).CrossRefGoogle Scholar
  5. 5.
    R.L. Kautz, M.S. Dresselhaus, D. Adler, and A. Linz, Phys. Rev. B 6, 2078 (1972).CrossRefGoogle Scholar
  6. 6.
    K. Sato, J. Phys. Soc. Jpn. 53, 1617 (1984).CrossRefGoogle Scholar
  7. 7.
    F. Gautier, G. Krill, M.F. Lapierre, P. Panissod, C. Robert, G. Czjzek, J. Fink, and H. Schmidt, Phys. Lett. A 53, 31 (1975).CrossRefGoogle Scholar
  8. 8.
    R.A. Munson, W. DeSorbo, and J.S. Kouvel, J. Chem. Phys. 47, 1769 (1967).CrossRefGoogle Scholar
  9. 9.
    D.W. Bullett, J. Phys. C Solid State Phys. 15, 6163 (1982).CrossRefGoogle Scholar
  10. 10.
    M.S. Faber, M.A. Lukowski, Q. Ding, N.S. Kaiser, and S. Jin, J. Phys. Chem. C 118, 21347 (2014).CrossRefGoogle Scholar
  11. 11.
    S.K. Mishra and R. Rawat, Solid State Commun. 244, 33 (2016).CrossRefGoogle Scholar
  12. 12.
    M. Otero-Leal, F. Rivadulla, and J. Rivas, IEEE Trans. Magn. 44, 4503 (2008)Google Scholar
  13. 13.
    P.J. Masset and R.A. Guidotti, J. Power Sources 178, 456 (2008).CrossRefGoogle Scholar
  14. 14.
    Y. Kim and J.B. Goodenough, J. Phys. Chem. C 112, 15060 (2008).CrossRefGoogle Scholar
  15. 15.
    J.Q. Dong, D.C. Li, Z.H. Peng, and Y.H. Zhou, J. Solid State Electrochem. 12, 171 (2008).CrossRefGoogle Scholar
  16. 16.
    L. Zhang, H.B. Wu, and X.W. Lou, Chem. Commun. 48, 6912 (2012).CrossRefGoogle Scholar
  17. 17.
    M.R. Gao, Y.F. Xu, J. Jiang, and S.H. Yu, Chem. Soc. Rev. 42, 2986 (2013).CrossRefGoogle Scholar
  18. 18.
    J. Xie, S.Y. Liu, G.S. Cao, T.J. Zhu, and X.B. Zhao, Nano Energy 2, 49 (2013).CrossRefGoogle Scholar
  19. 19.
    G.C. Huang, T. Chen, Z. Wang, K. Chang, and W.X. Chen, J. Power Sources 235, 122 (2013).CrossRefGoogle Scholar
  20. 20.
    B. Qiu, X.Y. Zhao, and D.G. Xia, J. Alloys Compd. 579, 372 (2013).CrossRefGoogle Scholar
  21. 21.
    J.C. Xing, Y.L. Zhu, Q.W. Zhou, X.D. Zheng, and Q.J. Jiao, Electrochim. Acta 136, 550 (2014).CrossRefGoogle Scholar
  22. 22.
    R. Ren, M.S. Faber, R. Dziedzic, Z.H. Wen, S. Jin, S. Mao, and J.H. Chen, Nanotechnology 26, 494001 (2015).CrossRefGoogle Scholar
  23. 23.
    D.J. Zhang, H.X. Liu, J.C. Zhang, X. Wang, R.C. Zhang, J.Y. Zhou, J. Zhong, and B.Q. Yuan, Int. J. Electrochem. Sci. 11, 6791 (2016).CrossRefGoogle Scholar
  24. 24.
    S.Y. Zhai, L.L. Li, and M.G. Wang, Ionics 23, 1819 (2017).CrossRefGoogle Scholar
  25. 25.
    J.Y. Zhang, Y.C. Liu, B.R. Xia, C.Q. Sun, Y.G. Liu, P.T. Liu, and D.Q. Gao, Electrochim. Acta 259, 955 (2018).CrossRefGoogle Scholar
  26. 26.
    L. Wang, T.Y. Chen, and C. Leighton, Phys. Rev. B 69, 094412 (2004).CrossRefGoogle Scholar
  27. 27.
    P.J. Brown, K.U. Newmann, A. Simon, F. Ueno, and R.A. Ziebeck, J. Phys. Condens. Matter 17, 1583 (2005).CrossRefGoogle Scholar
  28. 28.
    T. Takahashi, Y. Naitoh, T. Sato, T. Kamiyama, K. Yamada, H. Hiraka, Y. Endoh, M. Usuda, and N. Hamada, Phys. Rev. B 63, 094415 (2001).CrossRefGoogle Scholar
  29. 29.
    R. Yamamoto, A. Machida, Y. Moritomo, and A. Nakamura, Phys. Rev. B 59, R7793 (1999).CrossRefGoogle Scholar
  30. 30.
    J.Y. Zhao and J.M. Zhang, Mater. Res. Express 4, 086306 (2017).CrossRefGoogle Scholar
  31. 31.
    A. Piñeiro, A.S. Botana, V. Pardo, and D. Baldomir, J. Phys. Condens. Matter 22, 505602 (2010).CrossRefGoogle Scholar
  32. 32.
    Z.Y. Feng, Y. Yang, and J.M. Zhang, Solid State Commun. 273, 60 (2018).CrossRefGoogle Scholar
  33. 33.
    Z.Y. Feng, Y. Yang, and J.M. Zhang, Mater. Res. Express. 5, 016507 (2018).CrossRefGoogle Scholar
  34. 34.
    Y.J. Jin and J.I. Lee, Phys. Rev. B 73, 064405 (2006).CrossRefGoogle Scholar
  35. 35.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  36. 36.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  37. 37.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
  38. 38.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
  39. 39.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  40. 40.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  41. 41.
    E. Nowack, D. Schwarzenbach, and T. Hahn, Acta Crystallogr. B 47, 650 (1991).CrossRefGoogle Scholar
  42. 42.
    S.K. Kwon, S.J. Youn, and B.I. Min, Phys. Rev. B 62, 357 (2000).CrossRefGoogle Scholar
  43. 43.
    A.D. Becke and K.E. Edgecombe, J. Chern. Phys. 92, 5397 (1990).CrossRefGoogle Scholar
  44. 44.
    J.M. Silva, H. Deabreu, and H. Duarte, RSC Adv. 5, 2013 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.College of Physics and Information TechnologyShaanxi Normal UniversityXianPeople’s Republic of China
  2. 2.Department of ScienceTaiyuan Institute of TechnologyTaiyuanPeople’s Republic of China
  3. 3.Department of Physics, College of ScienceNorth University of ChinaTaiyuanPeople’s Republic of China

Personalised recommendations