Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 475–482 | Cite as

Thermoelectric Properties of Co- and Mn-Doped Al2Fe3Si3

  • Yasutaka Shiota
  • Kunio Yamamoto
  • Yuji Ohishi
  • Ken Kurosaki
  • Hiroaki MutaEmail author
Article

Abstract

Al2Fe3Si3 is a promising semiconductor for application as an environmentally friendly thermoelectric material. Its intrinsic carrier concentration is 5 × 1019 cm−3 and shows p-type conduction. In this article, we report on the thermoelectric properties of carrier-doped Al2Fe3Si3. Co or Mn was substituted for Fe for electron or hole doping, respectively. Al2Fe3−xMxSi3 (M=Co or Mn; x = 0.1–1.0 for Co and 0.1–0.3 for Mn) samples were synthesized by arc melting followed by spark plasma sintering and heat treatment. The Co- and Mn-doped samples displayed Hall carrier concentrations of 1.4 × 1020 cm−3 to 5.1 × 1020 cm−3 for n-type and 1.3 × 1020 cm−3 to 1.3 × 1021 cm−3 for p-type conduction. The n-type Al2Fe3Si3 exhibited a higher absolute value of Seebeck coefficient and lower Hall carrier mobility than p-type Al2Fe3Si3 at the same carrier concentration. The power factor increased with increasing carrier concentration for n-type conduction, and reached 0.65 × 10−3 W/mK at 520 K. On the other hand, the power factor for p-type Al2Fe3Si3 was not enhanced with increasing carrier concentration. The maximum ZT value for Co-substituted Al2Fe3Si3 was 0.09 at 600 K, which is 50% higher than that of pure Al2Fe3Si3.

Keywords

Thermoelectric material intermetallic compound carrier doping electrical properties thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was partly supported by Kansai Research Foundation for technology promotion.

References

  1. 1.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  2. 2.
    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chemie Int. 48, 8616 (2009).CrossRefGoogle Scholar
  3. 3.
    J. He and T.M. Tritt, Science 357, eaak9997 (2017).CrossRefGoogle Scholar
  4. 4.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).CrossRefGoogle Scholar
  5. 5.
    L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).CrossRefGoogle Scholar
  6. 6.
    Y. Takagiwa, Y. Isoda, M. Goto, and Y. Shinohara, J. Therm. Anal. Calorim. 131, 281 (2018).CrossRefGoogle Scholar
  7. 7.
    Y. Shiota, H. Muta, K. Yamamoto, Y. Ohishi, K. Kurosaki, and S. Yamanaka, Intermetallics 89, 51 (2017).CrossRefGoogle Scholar
  8. 8.
    Y. Takagiwa, Y. Isoda, M. Goto, and Y. Shinohara, J. Phys. Chem. Solids 118, 95 (2018).CrossRefGoogle Scholar
  9. 9.
    S. Lee, B. Kim, and S. Lee, Mater. Trans. 52, 1308 (2011).CrossRefGoogle Scholar
  10. 10.
    M.C.J. Marker, B. Skolyszewska-Kühberger, H.S. Effenberger, C. Schmetterer, and K.W. Richter, Intermetallics 19, 1919 (2011).CrossRefGoogle Scholar
  11. 11.
    L. Pauling, J. Am. Chem. Soc. 69, 542 (1947).CrossRefGoogle Scholar
  12. 12.
    A.L. Allred and E.G. Rochow, J. Inorg. Nucl. Chem. 5, 264 (1958).CrossRefGoogle Scholar
  13. 13.
    T.I. Yanson, M.B. Manyako, O.I. Bodak, N.V. German, O.S. Zarechnyuk, R. Cerný, J.V. Pacheco, and K. Yvon, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 52, 2964 (1996).CrossRefGoogle Scholar
  14. 14.
    C.B. Vining, J. Appl. Phys. 69, 331 (1991).CrossRefGoogle Scholar
  15. 15.
    A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013).CrossRefGoogle Scholar
  16. 16.
    P.G. Klemens, Phys. Rev. 119, 507 (1960).CrossRefGoogle Scholar
  17. 17.
    J. Callaway and H.C. von Baeyer, Phys. Rev. 120, 1149 (1960).CrossRefGoogle Scholar
  18. 18.
    B. Abeles, Phys. Rev. 131, 1906 (1963).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Yasutaka Shiota
    • 1
  • Kunio Yamamoto
    • 1
  • Yuji Ohishi
    • 1
  • Ken Kurosaki
    • 1
    • 2
    • 3
  • Hiroaki Muta
    • 1
    Email author
  1. 1.Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.JST, PRESTOKawaguchiJapan
  3. 3.Research Institute of Nuclear EngineeringUniversity of FukuiTsurugaJapan

Personalised recommendations