Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 92–98 | Cite as

The Potential for Metal–Carbon Nanotubes Composites as Interconnects

  • Leila Ladani
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • 22 Downloads
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder

Abstract

Despite their high potential, carbon nanotubes (CNTs) are yet to be effectively utilized in microelectronics due to challenges involved with their fabrication and integration with current microelectronic materials. This manuscript summarizes the effort made in fabricating the CNT-Cu composites for interconnects in microelectronics. Chemical vapor deposition (CVD) and plasma enhanced CVD (PECVD) are used to grow CNTs on substrates covered with Ti, TiN and Al2O3 and several plating processes such as electroplating, electroless plating, and sputtering methods were used to create the Cu-CNT composite layer. The PECVD is the best approach in growing the CNT forest with the right density. The seed layers selected in this study were not effective in allowing electroplating to occur. The most successful method was to use TiN as an underlayer, PECVD for CNT growth and sputtering as plating technique.

Keywords

Carbon nanotubes interconnects copper Cu-CNT composite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This paper is based upon research funded by the National Science Foundation under CMMI Grant Number 1734983. The authors would like to express their profound gratitude to the support from NSF. We are also very thankful for the facilities provided by the Microsystems Technology Laboratories at the Massachusetts Institute of Technology and Nanofab facility and CCMB laboratory at the University of Texas at Arlington. Funding was provided by Directorate for Engineering (Grant No. 1734983).

References

  1. 1.
    S. Tans, A. Verschueren, and C. Dekker, Nature 393, 49 (1998).CrossRefGoogle Scholar
  2. 2.
    M. Nihei, A. Kawabata, D. Kondo, M. Horibe, S. Sato, and Y. Awano, Jpn. J. Appl. Phys. 44, 1626 (2005).CrossRefGoogle Scholar
  3. 3.
    F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhögl, M. Liebau, E. Unger, and W. Hönlein, Microelectron. Eng. 64, 399 (2002).CrossRefGoogle Scholar
  4. 4.
    B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L.G. Bachas, Science 303, 62 (2004).CrossRefGoogle Scholar
  5. 5.
    H. Li, C. Xu, N. Srivastava, and K. Banerjee, IEEE Trans. Electron Devices 56, 1799 (2009).CrossRefGoogle Scholar
  6. 6.
    S. Joseph, R.J. Mashl, E. Jakobsson, and N.R. Aluru, Nano Lett. 3, 1399 (2003).CrossRefGoogle Scholar
  7. 7.
    L.M. Ang, T.S.A. Hor, G.Q. Xu, C.H. Tung, S.P. Zhao, and J.L.S. Wang, Carbon N. Y. 38, 363 (2000).CrossRefGoogle Scholar
  8. 8.
    X. Li, W.X. Chen, J. Zhao, W. Xing, and Z. De Xu, Carbon N. Y. 43, 2168 (2005).CrossRefGoogle Scholar
  9. 9.
    H.G. Park, Mass Transport Through Carbon Nanotubes, University of California at Berkley, 2007.Google Scholar
  10. 10.
    R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73, 2447 (1998).CrossRefGoogle Scholar
  11. 11.
    V. Desmaris, A.M. Saleem, S. Shafiee, J. Berg, M.S. Kabir, and A. Johansson, in 2014 IEEE 64th Electron. Components Technol. Conf. (IEEE, 2014), pp. 1071–1076.Google Scholar
  12. 12.
    Q. Ngo, T. Yamada, M. Suzuki, Y. Ominami, A.M. Cassell, and J. Li, IEEE Trans. Nanotechnol. 6, 688 (2007).Google Scholar
  13. 13.
    Y. Ominami, Q. Ngo, M. Suzuki, A.J. Austin, C.Y. Yang, A.M. Cassell, and J. Li, Appl. Phys. Lett. 89, 263114 (2006).CrossRefGoogle Scholar
  14. 14.
    R. Salgado-Delgado, A. Olarte-Paredes, Z. Vargas-Galarza, E. García-Hernández, A.M. Salgado-Delgado, E. Rubio-Rosas, J. Campos-álvarez, and V.M. Castaño, J. Electron. Mater. 45, 5341 (2016).CrossRefGoogle Scholar
  15. 15.
    J.V.S. Moreira, E.J. Corat, P.W. May, L.D.R. Cardoso, P.A. Lelis, and H. Zanin, J. Electron. Mater. 45, 5781 (2016).CrossRefGoogle Scholar
  16. 16.
    M. Billah and Q. Chen, J. Electron. Mater. 45, 98 (2016).CrossRefGoogle Scholar
  17. 17.
    Q. Cao, S.-J. Han, J. Tersoff, A.D. Franklin, Y. Zhu, Z. Zhang, G.S. Tulevski, J. Tang, and W. Haensch, Science 350, 68 (2015).CrossRefGoogle Scholar
  18. 18.
    J. Svensson and E.E.B. Campbell, J. Appl. Phys. 110, 111101 (2011).CrossRefGoogle Scholar
  19. 19.
    M.P. Anantram and F. Léonard, Rep. Prog. Phys. 69, 507 (2006).CrossRefGoogle Scholar
  20. 20.
    J.-O. Lee, C. Park, J.-J. Kim, J. Kim, J.W. Park, and K.-H. Yoo, J. Phys. D Appl. Phys. 33, 1953 (2000).CrossRefGoogle Scholar
  21. 21.
    P.R. Yasasvi Gangavarapu, P.C. Lokesh, K.N. Bhat, and A.K. Naik, IEEE Trans. Electron Devices 64, 4335 (2017).CrossRefGoogle Scholar
  22. 22.
    M.P. Lilly, M.J. Walker, W.S. Miller, J.X. Przybysz, and A.E. Berghmans, US 9,570,695 B2 (2017).Google Scholar
  23. 23.
    T. Yokogawa and S. Miyake, Proc. SPIE 10354, 103540O (2018).Google Scholar
  24. 24.
    S. Li, Y. Liu, S. Zhou, C. Zhou, and M. Chan, J. Mater. Chem. C 6, 5039 (2018).CrossRefGoogle Scholar
  25. 25.
    International Technology Working Groups. International Technology Roadmap for Semiconductors (2011).Google Scholar
  26. 26.
    J.R. Black, IEEE Trans. Electron Devices 16, 338 (1969).CrossRefGoogle Scholar
  27. 27.
    Z.H. Cheng, W.S. Zhao, L. Dong, J. Wang, P. Zhao, H. Gao, and G. Wang, IEEE Trans. Nanotechnol. 16, 891 (2017).Google Scholar
  28. 28.
    J. Lee, J. Liang, S.M. Amoroso, T. Sadi, L. Wang, F. Asenov, A. Pender, D.T. Reid, V.P. Georgiev, C. Millar, A. Todri-Sanial, and A. Asenov, in Int. Conf. Simul. Semicond. Process. Devices, SISPAD (2017), pp. 153–156.Google Scholar
  29. 29.
    S. Bistarelli, J. Liu, L. Pierantoni, and D. Mencarelli, IEEE Microw. Mag. 124 (2017).Google Scholar
  30. 30.
    Q.Y. Yang, Z.H. Cheng, W.S. Zhao, and G. Wang, in IEEE Electron. Des. Adv. Packag. Syst. Symp. (Haining, China, 2017), pp. 7–10.Google Scholar
  31. 31.
    C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D.N. Futaba, and M. Yumura, Nat. Commun. 4, 1 (2013).CrossRefGoogle Scholar
  32. 32.
    X. Chen, J. Xia, J. Peng, W. Li, and S. Xie, Compos. Sci. Technol. 60, 301 (2000).CrossRefGoogle Scholar
  33. 33.
    K.T.E. Dujardin, T.W. Ebbesen, H. Hiura, Science (80-.). 265, 1850 (19894).Google Scholar
  34. 34.
    F. Wang, S. Arai, and M. Endo, Electrochem. Commun. 6, 1042 (2004).CrossRefGoogle Scholar
  35. 35.
    S. Suárez, L. Reinert, and F. Mücklich, in Diam. Carbon Compos. Nanocomposites (2016), pp. 130–180.Google Scholar
  36. 36.
    C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao, and G. Sundararajan, Sci. Rep. 4, 4049 (2014).CrossRefGoogle Scholar
  37. 37.
    S. Arai and T. Osaki, J. Electrochem. Soc. 162, D68 (2014).CrossRefGoogle Scholar
  38. 38.
    Y. Pan, Y. Liu, T. Wang, and X. Lu, Microelectron. Eng. 105, 18 (2013).CrossRefGoogle Scholar
  39. 39.
    L. Ladani, I. Awad, Y. She, S. Dardona, and W. Schmidt, Mater. Today Commun. 11, 123 (2017).CrossRefGoogle Scholar
  40. 40.
    K. Yokota, K. Nakamura, T. Kasuya, K. Mukai, and M. Ohnishi, J. Phys. D Appl. Phys. 37, 1095 (2004).CrossRefGoogle Scholar
  41. 41.
    Z.P. Huang, D.Z. Wang, J.G. Wen, M. Sennett, H. Gibson, and Z.F. Ren, Appl. Phys. A Mater. Sci. Process. 74, 387 (2002).CrossRefGoogle Scholar
  42. 42.
    C.J. Lee, J. Park, Y. Huh, and J. Yong, Chem. Phys. Lett. 343, 33 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Mechanical and Aerospace Engineering DepartmentUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.University of Texas at Arlington Research Institute (UTARI)Fort WorthUSA

Personalised recommendations