Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 85–91 | Cite as

Chemo-thermo-mechanically Coupled Crystal Plasticity Simulation of Stress Evolution in Thermally Strained β-Sn Films

  • Aritra ChakrabortyEmail author
  • Philip Eisenlohr
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • 30 Downloads
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder

Abstract

Whisker formation in tin films is a mode of stress relaxation, but the exact conditions causing them are yet to be established. In this work, a three-dimensional full-field chemo-thermo-mechanically coupled crystal plasticity simulation of thermally strained tin films was performed to evaluate the stress evolution and connect it to the redistribution of vacancies. Spatial heterogeneity in the hydrostatic stress along the grain boundary network (that served as the primary conduit for mass transport) was observed, which became more homogeneous towards the film surface. Normal and shear tractions on the columnar grain boundaries were evaluated as they might be crucial to breaking of the oxide layer (formed on the film surface) especially when inclined grain boundaries are present. With such an advanced multi-physics framework, several crystallographic and geometrical factors influencing whisker formation can be analyzed thereby leading to a better understanding of the factors modulating the nucleation and growth of such whiskers.

Keywords

Vacancy flux hydrostatic stress whisker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z.B. Lee and N.Z. Lee, Acta Mater. 46, 3701 (1997).CrossRefGoogle Scholar
  2. 2.
    Official Journal of the European Union L 37/19 (2003).Google Scholar
  3. 3.
    J. Smetana, IEEE Trans. Electron. Packag. Manufact. 30, 11 (2007).CrossRefGoogle Scholar
  4. 4.
    G. Galyon, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1098 (2011).CrossRefGoogle Scholar
  5. 5.
    P. Jagtap, A. Chakraborty, P. Eisenlohr, and P. Kumar, Acta Mater. 134, 346 (2017).CrossRefGoogle Scholar
  6. 6.
    F. Pei, E. Buchovecky, A. Bower, and E. Chason, Acta Mater. 129, 462 (2017).CrossRefGoogle Scholar
  7. 7.
    E.R. Crandall, G.T. Flowers, R.Jackson, P. Lall, and M.J. Bozack, in 2011 IEEE 57th Holm Conference on Electrical Contacts (Holm), 1–5 (IEEE, 2011).Google Scholar
  8. 8.
    F. Yang and Y. Li, J. Appl. Phys. 104, 113512 (2008).CrossRefGoogle Scholar
  9. 9.
    E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, 171901 (2008).CrossRefGoogle Scholar
  10. 10.
    E. Buchovecky, N. Jadhav, A.F. Bower, and E. Chason, J. Electron. Mater. 38, 2676 (2009).CrossRefGoogle Scholar
  11. 11.
    K. Tu and J. Li, Mater. Sci. Eng. A 409, 131 (2005).CrossRefGoogle Scholar
  12. 12.
    P. Sarobol, J. Blendell, and C. Handwerker, Acta Mater. 61, 1991 (2013).CrossRefGoogle Scholar
  13. 13.
    F. Pei, N. Jadhav, E. Buchovecky, A.F. Bower, E. Chason, W. Liu, J.Z. Tischler, G.E. Ice, and R. Xu, J. Appl. Phys. 119, 105302 (2016).CrossRefGoogle Scholar
  14. 14.
    A. Chakraborty and P. Eisenlohr, J. Appl. Phys. 124, 025302 (2018).CrossRefGoogle Scholar
  15. 15.
    P. Shanthraj, P. Eisenlohr, M. Diehl, and F. Roters, Int. J. Plast. 66, 31 (2015).CrossRefGoogle Scholar
  16. 16.
    P. Eisenlohr, M. Diehl, R. Lebensohn, and F. Roters, Int. J. Plast. 46, 37 (2013).CrossRefGoogle Scholar
  17. 17.
    F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.-O. Fabritius, S. Nikolov, M. Friak, N. Fujita, N. Grilli, K.G.F. Janssens, N. Jia, P.J.J. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, and D. Raabe, Comput. Mater. Sci. (2018) https://doi.org/10.1016/j.commatsci.2018.04.030.
  18. 18.
    P. Shanthraj, B. Svendsen, L. Sharma, F. Roters, and D. Raabe, J. Mech. Phys. Solids 99, 19 (2017).CrossRefGoogle Scholar
  19. 19.
    B. Svendsen, P. Shanthraj, and D. Raabe, J. Mech. Phys. Solids 112, 619 (2018).CrossRefGoogle Scholar
  20. 20.
    D. Peirce, R. Asaro, and A. Needleman, Acta Metall. 30, 1087 (1982).CrossRefGoogle Scholar
  21. 21.
    J.W. Hutchinson, Proc. R. Soc. A Math. Phys. Eng. Sci. 348, 101 (1976).Google Scholar
  22. 22.
    T. Maiti and P. Eisenlohr, Scri. Mater. 145, 37 (2018).CrossRefGoogle Scholar
  23. 23.
    T.-K. Lee, T. R. Bieler, C.-U. Kim, and H. Ma, Fundamentals of Lead-Free Solder Interconnect Technology (Springer, Boston, 2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations