Journal of Electronic Materials

, Volume 48, Issue 1, pp 79–84 | Cite as

Facile Design of Conductive Ag-PDMS Electrodes for Stretchable Electrodes

  • Kyoung Ryeol Park
  • Jae Eun Jeon
  • Hyuksu Han
  • Sehoon Yoo
  • Kwangbo Shim
  • Sungwook Mhin
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-Free Solder


Recent technological progress towards the application of wearable electronic devices has prompted the development of flexible electrodes. To date, various technical approaches to improve the mechanical and electrical reliability of flexible electrodes have been reported; however, the transition from lab-scale processing to industrialization is still limited by complex processing steps involved in their preparation. Simple engineering steps are introduced to prepare flexible electrodes fabricated from silver-polydimethylsiloxane (Ag-PDMS) composites for wearable device applications. The electrical properties of the electrodes were investigated under stretching and bending conditions. Also, the effect of different Ag contents in the electrodes on electrical properties was investigated. As increasing the Ag content above 300 wt.%, Ag-PDMS electrodes exhibit electrical conductivity, which is closely related to the percolation threshold for the formation of a 3-D network of Ag in the PDMS matrix. Further increase of Ag content up to 450 wt.% resulted in electrical conductivity about 1000 S/cm, corresponding to an electrical resistivity of 1 mΩ cm. Furthermore, we investigated the electrical resistivity changes when repetitive stretching and bending deformation was applied. Based on the conceptual demonstration of a light-emitting diode circuit using Ag-PDMS electrodes, a simple printable electrode fabrication method can be applied to various stretchable electronic devices.


Ag bending flexible electrodes PDMS stretchable electrodes stretching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2018_6731_MOESM1_ESM.pdf (675 kb)
Supplementary material 1 (PDF 674 kb)


  1. 1.
    J. Nam, B. Seo, Y. Lee, D.H. Kim, and S. Jo, Sci. Rep. 7, 7575 (2017).CrossRefGoogle Scholar
  2. 2.
    Z. Yang, J. Deng, X. Sun, H. Li, and H. Peng, Adv. Mater. 26, 2643 (2014).CrossRefGoogle Scholar
  3. 3.
    D.J. Lipomi and Z. Bao, Energy Environ. Sci. 4, 3314 (2011).CrossRefGoogle Scholar
  4. 4.
    X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z.L. Wang, Sci. Adv. 3, e1700015 (2017).CrossRefGoogle Scholar
  5. 5.
    W. Liu, M.-S. Song, B. Kong, and Y. Cui, Adv. Mater. 29, 1603436 (2017).CrossRefGoogle Scholar
  6. 6.
    A.M. Zamarayeva, A.E. Ostfeld, M. Wang, J.K. Duey, I. Deckman, B.P. Lechene, G. Davies, D.A. Steingart, and A.C. Arias, Sci. Adv. 3, e1602051 (2017).CrossRefGoogle Scholar
  7. 7.
    S.H. Jeong, S. Zhang, K. Hjort, J. Hilborn, and Z. Wu, Adv. Mater. 28, 5830 (2016).CrossRefGoogle Scholar
  8. 8.
    Y. Cheng, R. Wang, H. Zhai, and J. Sun, Nanoscale 9, 3834 (2017).CrossRefGoogle Scholar
  9. 9.
    T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, Nat. Mater. 8, 494 (2009).CrossRefGoogle Scholar
  10. 10.
    X.Z. Niu, S.L. Peng, L.Y. Liu, W.J. Wen, and P. Sheng, Adv. Mater. 19, 2682 (2007).CrossRefGoogle Scholar
  11. 11.
    C.H. Lee, D.R. Kim, and X. Zheng, Nano Lett. 11, 3435 (2011).CrossRefGoogle Scholar
  12. 12.
    H.S. Liu, B.C. Pan, and G.S. Liou, Nanoscale 9, 2633 (2017).CrossRefGoogle Scholar
  13. 13.
    S.M. Park, N.S. Jang, S.H. Ha, K.H. Kim, D.W. Jeong, J. Kim, J. Lee, S.H. Kim, and J.M. Kim, J. Mater. Chem. C 3, 8241 (2015).CrossRefGoogle Scholar
  14. 14.
    J. Tang, H. Guo, M. Zhao, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, and W. Zhang, Sci. Rep. 5, 16527 (2015).CrossRefGoogle Scholar
  15. 15.
    J.A. Fan, W.H. Yeo, Y. Su, Y. Hattori, W. Lee, S.Y. Jung, Y. Zhang, Z. Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R.J. Larsen, Y. Huang, and J.A. Rogers, Nat. Commun. 5, 3266 (2014).CrossRefGoogle Scholar
  16. 16.
    H. Hocheng and C.-M. Chen, Sensors 14, 11855 (2014).CrossRefGoogle Scholar
  17. 17.
    H. Hwang, D.G. Kim, N.S. Jang, J.H. Kong, and J.M. Kim, Nanoscale Res. Lett. 11, 14 (2016).CrossRefGoogle Scholar
  18. 18.
    A. Rinaldi, A. Tamburrano, M. Fortunato, and M.S. Sarto, Sensors 16, 2148 (2016).CrossRefGoogle Scholar
  19. 19.
    G.S. Jeong, D.H. Baek, H.C. Jung, J.H. Song, J.H. Moon, S.W. Hong, I.Y. Kim, and S.H. Lee, Nat. Commun. 3, 977 (2012).CrossRefGoogle Scholar
  20. 20.
    T.-W. Lee and H.-H. Park, Compos. Sci. Technol. 114, 11 (2015).CrossRefGoogle Scholar
  21. 21.
    V. Martinez, F. Stauffer, M.O. Adagunodo, C. Forro, J. Voros, and A. Larmagnac, ACS Appl. Mater. Interfaces 7, 13467 (2015).CrossRefGoogle Scholar
  22. 22.
    A. Larmagnac, S. Eggenberger, H. Janossy, and J. Voros, Sci. Rep. 4, 7254 (2014).CrossRefGoogle Scholar
  23. 23.
    S.-H. Jang, Y.-L. Park, and H. Yin, Materials 9, 239 (2016).CrossRefGoogle Scholar
  24. 24.
    J.W. Boley, E.L. White, G.T.-C. Chiu, and R.K. Kramer, Adv. Funct. Mater. 24, 3501 (2014).CrossRefGoogle Scholar
  25. 25.
    K.Y. Chun, Y. Oh, J. Rho, J.H. Ahn, Y.J. Kim, H.R. Choi, and S. Baik, Nat. Nanotechnol. 5, 853 (2010).CrossRefGoogle Scholar
  26. 26.
    D. Stauffer and A. Aharony, Introduction to Percolation Theory (London: Taylor and Francis, 1992), pp. 89–113.Google Scholar
  27. 27.
    M. Weber and M.R. Kamal, Polym. Compos. 18, 711 (1997).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringHanyang UniversitySeoulRepublic of Korea
  2. 2.Korea Institute of Industrial TechnologyGangneung-siRepublic of Korea
  3. 3.Korea Institute of Industrial TechnologyIncheonRepublic of Korea

Personalised recommendations