Journal of Electronic Materials

, Volume 48, Issue 1, pp 517–525 | Cite as

Realizing Bidirectional Threshold Switching in Ag/Ta2O5/Pt Diffusive Devices for Selector Applications

  • Yaoyuan Wang
  • Ziyang Zhang
  • Huanglong Li
  • Luping ShiEmail author


Memristor crossbar arrays have great potential in brain inspired computing and the next generation high-density memories. The sneak current issue, however, seriously degrades their performance with increasing array size. Selectors with volatile threshold switching (TS) behavior have become important components of the arrays to suppress this issue. Ag/Ta2O5/Pt diffusive devices have promising TS characteristics as selectors, including high ON/OFF ratio and low OFF current. However, their unidirectional TS excludes their application in arrays consisting of bipolar memristors. Bipolar memristors require voltage biases of different polarities to enable the device programming, thus selectors with bidirectional TS are essential for them. In this study, we realize reproducible bidirectional TS behavior on Ag/Ta2O5/Pt diffusive devices. The ON/OFF ratio and the OFF current of the device are ∼107 A and ∼ 10−12 A, respectively. The switching voltage is ∼ 0.35 V and the hold voltage is ∼ 0.125 V. The TS behavior can be also optimized by choosing suitable compliance current during a voltage sweep. Simulations of nanoparticles diffusion are also carried out to study the mechanism of this bidirectional TS process. The simulations show that this behavior can be attributed to the outer diffusion of Ag nanoparticles from an Ag electrode and their accumulation near the Pt electrode under the voltage sweep, which can serve as an additional counter active electrode. This work illustrates that Ag/Ta2O5/Pt diffusive devices are promising candidates for selector applications in bipolar memristor crossbar arrays.


Bidirectional threshold switching selector diffusive tantalum oxide bipolar memristor arrays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partly supported by National Nature Science Foundation of China (Nos. 61327902, 61836004, and 61704096), Suzhou-Tsinghua innovation leading program (No. 2016SZ0102), Beijing Natural Science Foundation (No. 4164087), and Brain-Science Special Program of Beijing under Grant Z181100001518006.


  1. 1.
    P.M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W.D. Lu, Nat. Nanotechnol. 12, 784 (2017).CrossRefGoogle Scholar
  2. 2.
    S. Choi, J.H. Shin, J. Lee, P. Sheridan, and W.D. Lu, Nano Lett. 17, 3113 (2017).CrossRefGoogle Scholar
  3. 3.
    F. Alibart, E. Zamanidoost, and D.B. Strukov, Nat. Commun. 4, 2072 (2013).CrossRefGoogle Scholar
  4. 4.
    M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, and D.B. Strukov, Nature 521, 61 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, W. Kim, R. Jordan, G.W. Burr, N. Sosa, A. Ray, J.P. Han, C. Miller, K. Hosokawa, and C. Lam, in IEDM Conference Proceedings (2015), pp. 443–446.Google Scholar
  6. 6.
    P. Yao, H. Wu, B. Gao, S.B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang, N. Deng, L. Shi, H.S.P. Wong, and H. Qian, Nat. Commun. 8, 15199 (2017).CrossRefGoogle Scholar
  7. 7.
    C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C.E. Graves, Z. Li, J.P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R.S. Williams, J.J. Yang, and Q. Xia, Nat. Electron. 1, 52 (2018).CrossRefGoogle Scholar
  8. 8.
    D.C. Kau, S. Tang, I.V. Karpov, R. Dodge, B. Klehn, J.A. Kalb, J. Strand, A. Diaz, N. Leung, J. Wu, S. Lee, T. Langtry, K. Chang, C. Papagianni, J. Lee, J. Hirst, S. Erra, E. Flores, N. Righos, H. Castro, and G. Spadini, in IEDM Conference Proceedings (2009), pp. 617–620.Google Scholar
  9. 9.
    Y. Ho, G.M. Huang, and P. Li, in ICCAD Conference Proceedings (2009), pp. 485–490.Google Scholar
  10. 10.
    D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, and C.S. Hwang, Rep. Prog. Phys. 75, 076502 (2012).CrossRefGoogle Scholar
  11. 11.
    B.J. Choi, A.B.K. Chen, X. Yang, and I.W. Chen, Adv. Mater. 23, 3847 (2011).Google Scholar
  12. 12.
    H.Y. Chen, S. Brivio, C.C. Chang, J. Frascaroli, T.H. Hou, B. Hudec, M. Liu, H. Lv, G. Molas, J. Sohn, S. Spiga, V.M. Teja, E. Vianello, and H.S.P. Wong, J. Electroceram. 39, 21 (2017).CrossRefGoogle Scholar
  13. 13.
    I. Vourkas, D. Stathis, G.C. Sirakoulis, and S. Hamdioui, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24, 206 (2016).CrossRefGoogle Scholar
  14. 14.
    M.A. Zidan, H.A.H. Fahmy, M.M. Hussain, and K.N. Salama, Microelectron. J. 44, 176 (2013).CrossRefGoogle Scholar
  15. 15.
    J. Zhou, K.H. Kim, and W. Lu, IEEE Trans. Electron Devices 61, 1369 (2014).CrossRefGoogle Scholar
  16. 16.
    J.J. Yang, M.X. Zhang, M.D. Pickett, F. Miao, J.P. Strachan, W.D. Li, W. Yi, D.A.A. Ohlberg, B.J. Choi, W. Wu, J.H. Nickel, G. Medeiros-Ribeiro, and R.S. Williams, Appl. Phys. Lett. 100, 113501 (2012).CrossRefGoogle Scholar
  17. 17.
    M.A. Zidan, H. Omran, R. Naous, A. Sultan, H.A.H. Fahmy, W.D. Lu, and K.N. Salama, Sci. Rep. 6, 18863 (2016).CrossRefGoogle Scholar
  18. 18.
    M. Zangeneh and A. Joshi, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22, 1815 (2014).CrossRefGoogle Scholar
  19. 19.
    S. Yu, Z. Li, P.Y. Chen, H. Wu, B. Gao, D. Wang, W. Wu, and H. Qian, in IEDM Conference Proceedings (2016), pp. 416–419.Google Scholar
  20. 20.
    S. Ambrogio, S. Balatti, V. Milo, R. Carboni, Z.Q. Wang, A. Calderoni, N. Ramaswamy, and D. Ielmini, IEEE Trans. Electron Devices 63, 1508 (2016).CrossRefGoogle Scholar
  21. 21.
    J.J. Huang, Y.M. Tseng, W.C. Luo, C.W. Hsu, and T.H. Hou, in IEDM Conference Proceedings (2011), pp. 733-736.Google Scholar
  22. 22.
    E. Cha, J. Park, J. Woo, D. Lee, A. Prakash, and H. Hwang, Appl. Phys. Lett. 108, 153502 (2016).CrossRefGoogle Scholar
  23. 23.
    M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, IEEE Electron Device Lett. 32, 1579 (2011).CrossRefGoogle Scholar
  24. 24.
    M.J. Lee, D. Lee, H. Kim, H.S. Choi, J.B. Park, H.G. Kim, Y.K. Cha, U.I. Chung, I.K. Yoo and K. Kim, in IEDM Conference Proceedings (2012), pp. 33–35.Google Scholar
  25. 25.
    Y. Koo, S. Lee, S. Park, M. Yang, and H. Hwang, IEEE Electron Device Lett. 38, 568 (2017).CrossRefGoogle Scholar
  26. 26.
    K. Gopalakrishnan, R.S. Shenoy, C.T. Rettner, K. Virwani, D.S. Bethune, R.M. Shelby, G.W. Burr, A. Kellock, R.S. King, K. Nguyen, A.N. Bowers, M. Jurich, B. Jackson, A.M. Friz, T. Topuria, P.M. Rice, and B.N. Kurdi, in VLSIT Conference Proceedings (2010), pp. 205–206.Google Scholar
  27. 27.
    K. Virwani, G.W. Burr, R.S. Shenoy, C.T. Rettner, A. Padilla, T. Topuria, P.M. Rice, G. Ho, R.S. King, K. Nguyen, A.N. Bowers, M. Jurich, M. BrightSky, E.A. Joseph, A.J. Kellock, N. Arellano, B.N. Kurdi, and K. Gopalakrishnan, in IEDM Conference Proceedings (2012), pp. 36–39.Google Scholar
  28. 28.
    S.H. Jo, T. Kumar, S. Narayanan, H. Nazarian, and I.E.E.E. Trans, Electron Devices 62, 3477 (2015).CrossRefGoogle Scholar
  29. 29.
    K.M. Martens, I.P. Radu, G. Rampelberg, J. Verbruggen, S. Cosemans, S. Mertens, X. Shi, M. Schaekers, C. Huyghebaert, S. De-Gendt, C. Detavernier, M. Heyns, and J.A. Kittl, ECS Trans. 45, 151 (2012).CrossRefGoogle Scholar
  30. 30.
    S. Kim, X. Liu, J. Park, S. Jung, W. Lee, J. Woo, J. Shin, G. Choi, C. Cho, S. Park, D. Lee, E. Cha, B.H. Lee, H.D. Lee, S.G. Kim, S. Chung, and H. Hwang, in VLSIT Conference Proceedings (2012), pp. 155–156.Google Scholar
  31. 31.
    Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z. Li, Q. Wu, M. Barnell, G.L. Li, H.L. Xin, R.S. Williams, Q. Xia, and J.J. Yang, Nat. Mater. 16, 101 (2017).Google Scholar
  32. 32.
    A. Wedig, M. Luebben, D.Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, and I. Valov, Nat. Nanotechnol. 11, 67 (2016).CrossRefGoogle Scholar
  33. 33.
    R. Midya, Z. Wang, J. Zhang, S.E. Savel’ev, C. Li, M. Rao, M.H. Jang, S. Joshi, H. Jiang, P. Lin, K. Norris, N. Ge, Q. Wu, M. Barnell, Z. Li, H.L. Xin, R.S. Williams, Q. Xia, and J.J. Yang, Adv. Mater. 29, 1604457 (2017).CrossRefGoogle Scholar
  34. 34.
    M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).CrossRefGoogle Scholar
  35. 35.
    T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono, Nanotechnology 23, 435705 (2012).CrossRefGoogle Scholar
  36. 36.
    T. Gua, Z. Wang, T. Tada, and S. Watanabe, J. Appl. Phys. 106, 103713 (2009).CrossRefGoogle Scholar
  37. 37.
    T. Gu, T. Tada, and S. Watanabe, ACS Nano 4, 6477 (2010).CrossRefGoogle Scholar
  38. 38.
    Z. Wu, X. Chen, Y. Zhang, C. Dun, D.L. Carroll, and Z. Hu, Adv. Mater. Interfaces 5, 1701210 (2018).CrossRefGoogle Scholar
  39. 39.
    H. Sun, Q. Liu, C. Li, S. Long, H. Lv, C. Bi, Z. Huo, L. Li, and M. Liu, Adv. Funct. Mater. 24, 5679 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Yaoyuan Wang
    • 1
    • 2
    • 3
  • Ziyang Zhang
    • 1
    • 2
    • 3
  • Huanglong Li
    • 1
    • 2
  • Luping Shi
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Precision InstrumentTsinghua UniversityBeijingChina
  2. 2.Center for Brain Inspired Computing ResearchTsinghua UniversityBeijingChina
  3. 3.Beijing Innovation Center for Future ChipTsinghua UniversityBeijingChina

Personalised recommendations