Journal of Electronic Materials

, Volume 48, Issue 1, pp 494–502 | Cite as

Effect of Annealing Temperature on the Structure, Morphology and Photoluminescence Properties of MgAl2O4:0.1% Eu3+ Nanophosphor Prepared by Sol–Gel Method

  • L. T. MelatoEmail author
  • L. F. Koao
  • T. E. Motaung
  • H. C. Swart
  • S. V. MotloungEmail author


Un-doped and 0.1% Eu3+-doped magnesium aluminate (MgAl2O4) nanomaterials were synthesized using the sol–gel method. The effects of annealing temperature (AT) from 600–1300°C on the crystal structure, morphology and photoluminescence properties were investigated. X-ray powder diffraction showed that below 650°C the structure consists of poorly crystalline and amorphous phases. A cubic phase structure corresponding to MgAl2O4 was formed at AT above 700°C. Generally, the crystallite sizes increased with an increase in AT. Energy-dispersive x-ray spectroscopy results confirmed the presence of the anticipated elementary composition. The scanning electron microscope and transmission electron microscope images suggested that the AT influenced the morphology, crystallite sizes and shape of the prepared phosphors. Photoluminescence (PL) results showed that the emissions peaks at 384 and 561 nm originate from defects located at different levels within the host material. The emission peaks at 561 nm, 581 nm, 594 nm, 618 nm, 655 nm and 701 nm were attributed to the (5D1 → 7F4) (5D0 → 7F0), (5D0 → 7F1), (5D0 → 7F2), (5D0 → 7F3) and (5D0 → 7F4) transitions of Eu3+ ion. Emission peaks from Eu3+ were observed to increase in intensity as the AT was increased. Luminescence enhancement was observed when increasing the AT to 650°C, while further increase lead to luminescence quenching. The Commision Internationale de l’Eclairage (CIE) coordinates results showed that the emission colour shift can be tuned from bluish to reddish by varying the AT.


MgAl2O4 Eu3+ doping sol–gel annealing temperature photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.V. Motloung, F.B. Dejene, E.M. Sithole, L.F. Koao, O.M. Ntwaeaborwa, H.C. Swart, and T.E. Motaung, J. Elec. Mater. 45, 4796 (2016).CrossRefGoogle Scholar
  2. 2.
    P. Lombard, B. Boizot, N. Ollier, A. Jouin, and A. Yoshikawa, J. Cryst. Growth 311, 899 (2009).CrossRefGoogle Scholar
  3. 3.
    P. Gluchowski, R. Pazik, D. Hreniak, and W. Strek, Chem. Phys. 358, 52 (2009).CrossRefGoogle Scholar
  4. 4.
    J. Xiaolin, Z. Haijun, Y. Yongjie, and L. Zhanjie, Mat. Sci. Eng. A 379, 112 (2004).CrossRefGoogle Scholar
  5. 5.
    G.B. Andreozzi, F. Princivalle, H. Skogby, and A.D. Giusta, Am. Mineral. 85, 1164 (2000).CrossRefGoogle Scholar
  6. 6.
    K.C. Kumar, N.M. Rao, S. Kaleemulla, and G.V. Rao, Physica B. 75 (2017).Google Scholar
  7. 7.
    C. Pacurariu, I. Lazau, Z. Ecsedi, R. Lazau, P. Barvinschi, and G. Marginean, J. Eur. Ceram. Soc. 27, 707 (2007).CrossRefGoogle Scholar
  8. 8.
    E.N. Alvar, M. Rezaei, and H.N. Alvar, Powder. Tech. 2, 275 (2010).CrossRefGoogle Scholar
  9. 9.
    E. Jerndal, T. Mattisson, I. Thijs, F. Snijkers, and A. Lyngfelt, Energ. Proc. 1, 479 (2009).CrossRefGoogle Scholar
  10. 10.
    S.J. Yoon, D.A. Hakeem, and K. Park, Ceram. Int. 42, 1261 (2016).CrossRefGoogle Scholar
  11. 11.
    A.S. Hassanien, A.A. Akl, and A.H. Saaedi, Cryst. Eng. Comm. 20, 1716 (2018).CrossRefGoogle Scholar
  12. 12.
    I.E. Kolesnikov, E.V. Golyeva, A.V. Kurochkin, and M.D. Mikhailov, J. Alloys Compd. 654, 32 (2016).CrossRefGoogle Scholar
  13. 13.
    X.Y. Chen, C. Ma, Z.J. Zhang, and X. Xuan Li, Micropor. Mesopor. Mat. 123, 202 (2009).Google Scholar
  14. 14.
    S.V. Motloung, M. Tsega, F.B. Dejene, H.C. Swart, O.M. Ntwaeaborwa, L.F. Koao, T.E. Motaung, and M.J. Hato, J. Alloys Compd. 677, 72 (2016).CrossRefGoogle Scholar
  15. 15.
    S.V. Motloung, F.B. Dejene, H.C. Swart, and O.M. Ntwaeaborwa, Ceram. Int. 41, 6776 (2015).CrossRefGoogle Scholar
  16. 16.
    L.T. Melato, T.E. Motaung, O.M. Ntwaeaborwa, and S.V. Motloung, Opt. Mater. 66, 319 (2017).CrossRefGoogle Scholar
  17. 17.
    B.D. Cullity and S.R. Sock, Elements of X-ray Diffraction, 3rd ed. (Reading: Pearson Education, 2001), pp. 402–404.Google Scholar
  18. 18.
    A.N. Mallika, A.R. Reddy, and K.V. Reddy, J. Adv. Ceram. 4, 123 (2015).CrossRefGoogle Scholar
  19. 19.
    S.S. Raj, S.K. Gupta, V. Grover, K.P. Muthe, V. Natarajan, and A.K. Tyagi, J. Mol. Struct. 1089, 81 (2015).CrossRefGoogle Scholar
  20. 20.
    A. Ibarra, D. Bravo, F.J. Lopez, and F.A. Garner, J. Nucl. Mater. 336, 156 (2005).CrossRefGoogle Scholar
  21. 21.
    S.V. Motloung, F.B. Dejene, H.C. Swart, and O.M. Ntwaeaborwa, J. Sol-Gel. Sci. Technol. 70, 422 (2014).CrossRefGoogle Scholar
  22. 22.
    A. Kruopyte, R. Giraitis, R. Juskenas, D. Enseling, T. Jüstel, and A. Katelnikovas, J. Lumin. 192, 520 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsSefako Makgatho Health Science UniversityMedunsaSouth Africa
  2. 2.Department of PhysicsUniversity of the Free State (Qwaqwa Campus)PhuthaditjhabaSouth Africa
  3. 3.Department of ChemistryUniversity of ZululandRichards BaySouth Africa
  4. 4.Department of PhysicsUniversity of the Free StateBloemfonteinSouth Africa
  5. 5.Department of PhysicsNelson Mandela University (NMU)Port ElizabethSouth Africa

Personalised recommendations