Journal of Electronic Materials

, Volume 48, Issue 1, pp 467–474 | Cite as

Solar Thermal Cogeneration System Using a Cylindrical Thermoelectric Module

  • Akitoshi SuzumuraEmail author
  • Hirofumi Hazama
  • Masato Matsubara
  • Ryoji Asahi


We propose a solar thermal cogeneration system using a cylindrical thermoelectric module for efficient solar energy convergence. Numerical simulations are presented to evaluate the system efficiency compared with a conventional pillar-type thermoelectric cogeneration system. We consider the effects of thermal radiation, contact resistances, and heat flux in the connecting wire, which significantly affect the system efficiency. Compared with the pillar-type device, the cylindrical device can achieve a higher heat flux and lower thermal radiation loss from the sides. In particular, the thermal radiation loss from the sides becomes negligible in a scaled-up cylindrical device. When the areas of the light-absorbing layer are the same in both devices, the power efficiencies, which are defined as power extracted from the module over input heat to the module, are comparable, but the system efficiency, which is defined as extracted heat from the module over input heat to the module, of the cylindrical device is higher than that of the pillar-type device. In the case of the unileg cylindrical device, where the hot side is connected to the cold side by the Cu wire, the system efficiency increased but the power efficiency decreased owing to the heat flux through the Cu wire. On the other hand, the p-n couple cylindrical device can overcome the trade-off and achieve system efficiency as high as 91.6%, including 8.1% power efficiency.


Solar energy thermoelectrics simulation cogeneration system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Sundarraj, D. Maity, S.S. Roy, and R.A. Taylor, RSC Adv. 4, 46860 (2014).CrossRefGoogle Scholar
  2. 2.
    N. Wang, L. Han, H. He, N.H. Park, and K. Koumoto, Energy Environ. Sci. 4, 3676 (2011).CrossRefGoogle Scholar
  3. 3.
    H. He, C. Zhang, T. Liu, Y. Cao, N. Wang, and Z. Guo, J. Mater. Chem. A 4, 9362 (2016).CrossRefGoogle Scholar
  4. 4.
    E.A. Chavez Urbiola and Y. Vorobiev, Int. J. Photoenergy 2013, 704087 (2013).Google Scholar
  5. 5.
    M. Hasan Nia, A. Abbas Nejad, A.M. Goudarzi, M. Balizadeh, and P. Samadian, Energy Convers. Manag. 84, 305 (2014).CrossRefGoogle Scholar
  6. 6.
    P. Sundarraj, R.A. Taylor, D. Banejee, D. Maity, and S.S. Roy, J. Phys. D Appl. Phys. 50, 015501 (2017).CrossRefGoogle Scholar
  7. 7.
    Z. Ouyang and D. Li, Sci. Rep. 6, 24123 (2016).CrossRefGoogle Scholar
  8. 8.
    D. Kraemer, B. Poudel, H.P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, Nat. Mater. 10, 532 (2011).CrossRefGoogle Scholar
  9. 9.
    N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki, and K. Koumoto, Sci. Rep. 3, 3449 (2013).CrossRefGoogle Scholar
  10. 10.
    C.M. Hanton, Thermoelectric Voltage Generator, U.S. Patent 4,095,998, 20 June 1978.Google Scholar
  11. 11.
    A.Z. Hed, Cylindrical Thermoelectric Cells, U.S. Patent 52,285,923, 20 July 1993.Google Scholar
  12. 12.
    S. Nishimoto, T. Kitayama, and Y. Fujisawa, Tubular Thermoelectric Module, U.S. Patent 6,096,966, 1 Aug 2000.Google Scholar
  13. 13.
    R.O. Suzuki and D. Tanaka, J. Power Sources 122, 201 (2003).CrossRefGoogle Scholar
  14. 14.
    R.O. Suzuki and D. Tanaka, J. Power Sources 124, 293 (2003).CrossRefGoogle Scholar
  15. 15.
    T. Kyono, R.O. Suzuki, and K. Ono, IEEE Trans. Energy Convers. 18, 330 (2003).CrossRefGoogle Scholar
  16. 16.
    R.O. Suzuki and D. Tanaka, J. Power Sources 132, 266 (2004).CrossRefGoogle Scholar
  17. 17.
    G. Min and D.M. Rowe, Semicond. Sci. Technol. 22, 880 (2007).CrossRefGoogle Scholar
  18. 18.
    A. Schmitz, C. Stiewe, and E. Muller, J. Electron. Mater. 42, 1702 (2013).CrossRefGoogle Scholar
  19. 19.
    M. Matsubara and R. Asahi, J. Electron. Mater. 45, 1669 (2016).CrossRefGoogle Scholar
  20. 20.
    S. Laube, D. Tatarinov, M. Morschel, and G. Bastian, in AIP Conference Proceedings, (2012), pp. 431–434.Google Scholar
  21. 21.
    C.A. Domenicali, J. Appl. Phys. 25, 1310 (1954).CrossRefGoogle Scholar
  22. 22.
    A. Suzumura, Thermoelectric Conversion Element, Japan Patent 5,780,254, 24 July 2015.Google Scholar
  23. 23.
    P. Ziolkowski, P. Poinas, J. Leszczynski, G. Karpinski, and E. Muller, J. Electron. Mater. 39, 1934 (2010).CrossRefGoogle Scholar
  24. 24.
    D. Kraemer, K. McEnaney, M. Chiesa, and G. Chen, Sol. Energy 86, 1338 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Toyota Central R&D Labs., Inc.NagakuteJapan

Personalised recommendations