Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 445–453 | Cite as

Synthesis of SnO2 Nanoparticles by Electrooxidation Method and Their Application in Dye-Sensitized Solar Cells: The Influence of the Counterion

  • Masoud Abrari
  • Majid GhanaatshoarEmail author
  • Hamid Reza Moazami
  • Saied Saeed Hosseiny Davarani
Article
  • 16 Downloads

Abstract

A fast and facile electrochemical method called electrooxidation was used to prepare SnO2 nanoparticles. In this route, a sacrificial tin anode is dissolved in an electrolyte by applying a voltage to an electrochemical cell. We used different electrolyte environments, namely tetramethylammonium chloride and different counterions of tetrabutylammonium cation, viz. Br, Cl, and ClO 4 . Characterization results showed that the size distribution was more uniform for the nanoparticles created with Br and Cl counterions. Furthermore, the particles in these samples were smaller than in the others. The amount of OH groups on the surface of the Br and Cl samples was higher than for the other samples, enhancing dye adsorption. Dye-sensitized solar cells (DSSCs) were fabricated from the produced SnO2 nanoparticles, and the influence of the different counterions on their performance was investigated. By varying the counterion in the electrolyte, samples with different hydrophilic nature and dye-loading ability were obtained. The dye adsorption and consequently the current density of the cell made from the Br solution were higher than for the other samples, and the power conversion efficiency in this case reached 1.5%.

Keywords

Tin oxide nanoparticles dye-sensitized solar cells electrooxidation counterion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Asemi, S. Maleki, and M. Ghanaatshoar, J. Sol-Gel Sci. Technol. 81, 645–651 (2017).CrossRefGoogle Scholar
  2. 2.
    M. Ameri, M. Raoufi, M.R. Zamani-Meymian, F. Samavat, M.R. Fathollahi, and E. Mohajerani, J. Electron. Mater. 47, 1993–1999 (2018).CrossRefGoogle Scholar
  3. 3.
    T.T. Pham, N. Mathews, Y.M. Lam, and S. Mhaisalkar, J. Electron. Mater. 46, 3801–3807 (2017).CrossRefGoogle Scholar
  4. 4.
    L. Zhang, K. Jin, S. Li, L. Wang, Y. Zhang, and X. Li, J. Electron. Mater. 44, 244–251 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Mohammadnejad, A. Khalafi, and S.M. Ahmadi, Sol. Energy 133, 501–511 (2016).CrossRefGoogle Scholar
  6. 6.
    X. Xiao, L. Liu, J. Ma, Y. Ren, X. Cheng, Y. Zhu, D. Zhao, A.A. Elzatahry, A. Alghamdi, and Y. Deng, ACS Appl. Mater. Interfaces 10, 1871–1880 (2018).CrossRefGoogle Scholar
  7. 7.
    A. Birkel, Y.G. Lee, D. Koll, X. Van Meerbeek, S. Frank, M.J. Choi, Y.S. Kang, K. Char, and W. Tremel, Energy Environ. Sci. 5, 5392–5400 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Dadkhah and M. Salavati-Niasari, Mater. Sci. Semicond. Process. 20, 41–48 (2014).CrossRefGoogle Scholar
  9. 9.
    M.M. Rashad, I.A. Ibrahim, I. Osama, and A.E. Shalan, Bull. Mater. Sci. 37, 903–909 (2014).CrossRefGoogle Scholar
  10. 10.
    M.S. Pereira, F.A.S. Lima, C.B. Silva, P.T.C. Freire, and I.F. Vasconcelos, J. Sol-Gel Sci. Technol. 84, 206–213 (2017).CrossRefGoogle Scholar
  11. 11.
    M.A. Hossain, G. Yang, M. Parameswaran, J.R. Jennings, and Q. Wang, J. Phys. Chem. C 114, 21878–21884 (2010).CrossRefGoogle Scholar
  12. 12.
    M. Abrari, M. Ghanaatshoar, S.S.H. Davarani, H.R. Moazami, and I. Kazeminezhad, Appl. Phys. A 123, 326 (2017).CrossRefGoogle Scholar
  13. 13.
    M. Asemi, A. Suddar, and M. Ghanaatshoar, J. Mater. Sci. Mater. Electron. 28, 15233–15238 (2017).CrossRefGoogle Scholar
  14. 14.
    H.R. Moazami, S.S.H. Davarani, T. Yousefi, and A.R. Keshtkar, Mater. Sci. Semicond. Process. 30, 682–687 (2015).CrossRefGoogle Scholar
  15. 15.
    B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, 2nd ed. (New York: Wiley, 1991).CrossRefGoogle Scholar
  16. 16.
    H. Cheng, J. Ma, and Z. Zhao, Chem. Mater. 6, 1033–1040 (1994).CrossRefGoogle Scholar
  17. 17.
    M. Asemi and M. Ghanaatshoar, J. Am. Ceram. Soc. 100, 5584–5592 (2017).CrossRefGoogle Scholar
  18. 18.
    C. Suryanarayana and M.G. Norton, X-ray Diffraction: A Practical Approach, Vol. 207 (London: Plenum, 1998).CrossRefGoogle Scholar
  19. 19.
    V.D. Mote, Y. Purushotham, and B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012).CrossRefGoogle Scholar
  20. 20.
    S. Chakraborty and P. Kumbhakar, Indian J. Phys. 88, 251–257 (2014).CrossRefGoogle Scholar
  21. 21.
    Y.C. Goswami, V. Kumar, P. Rajaram, V. Ganesan, M.A. Malik, and P. O’Brien, J. Sol-Gel Sci. Technol. 69, 617–624 (2014).CrossRefGoogle Scholar
  22. 22.
    U. Aschauer, R. Pfenninger, S.M. Selbach, T. Grande, and N.A. Spaldin, Phys. Rev. B 88, 054111 (2013).CrossRefGoogle Scholar
  23. 23.
    P. Chetri and A. Choudhury, Physica E 47, 257–263 (2013).CrossRefGoogle Scholar
  24. 24.
    H. Zhang, Y. Liu, K. Zhu, G. Siu, Y. Xiong, and C. Xiong, J. Phys.: Condens. Matter 10, 11121 (1998).Google Scholar
  25. 25.
    H. Seema, K.C. Kemp, V. Chandra, and K.S. Kim, Nanotechnology 23, 355705 (2012).CrossRefGoogle Scholar
  26. 26.
    H.R. Moazami, S.S.H. Davarani, T. Yousefi, and H. Darjazi, Mater. Sci. Semicond. Process. 38, 240–248 (2015).CrossRefGoogle Scholar
  27. 27.
    S. Zhan, D. Li, S. Liang, X. Chen, and X. Li, Sensors 13, 4378–4389 (2013).CrossRefGoogle Scholar
  28. 28.
    K. Arora, M. Tomar, and V. Gupta, Analyst 139, 837–849 (2014).CrossRefGoogle Scholar
  29. 29.
    M. Asemi and M. Ghanaatshoar, Ceram. Int. 42, 6664–6672 (2016).CrossRefGoogle Scholar
  30. 30.
    M. Asemi, M. Ahmadi, and M. Ghanaatshoar, Ceram. Int. 44, 12862–12868 (2018).CrossRefGoogle Scholar
  31. 31.
    A. Kathalingam, M.R. Kim, Y.S. Chae, J.K. Rhee, and T. Mahalingam, J. Korean Phys. Soc. 55, 2476–2481 (2009).CrossRefGoogle Scholar
  32. 32.
    K. Anandan and V. Rajendran, J. Non-Oxide Glasses 2, 83–89 (2010).Google Scholar
  33. 33.
    D.F. Cox, T.B. Fryberger, and S. Semancik, Phys. Rev. B 38, 2072 (1988).CrossRefGoogle Scholar
  34. 34.
    Q. Wali, Z.H. Bakr, N.A. Manshor, A. Fakharuddin, and R. Jose, Sol. Energy 132, 395–404 (2016).CrossRefGoogle Scholar
  35. 35.
    M. Asemi and M. Ghanaatshoar, Appl. Phys. A 122, 853 (2016).CrossRefGoogle Scholar
  36. 36.
    M. Asemi and M. Ghanaatshoar, J. Mater. Sci. Mater. Electron. 52, 489–503 (2017).Google Scholar
  37. 37.
    A. Zaban, M. Greenshtein, and J. Bisquert, ChemPhysChem 4, 859–864 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Masoud Abrari
    • 1
    • 2
  • Majid Ghanaatshoar
    • 1
    • 2
    Email author
  • Hamid Reza Moazami
    • 3
  • Saied Saeed Hosseiny Davarani
    • 2
    • 4
  1. 1.Laser and Plasma Research InstituteShahid Beheshti University TehranIran
  2. 2.Solar Cells Research GroupShahid Beheshti UniversityTehranIran
  3. 3.School of Physics and AcceleratorsNSTRITehranIran
  4. 4.Faculty of ChemistryShahid Beheshti University TehranIran

Personalised recommendations