Advertisement

Densification and Mechanical Properties of YAG Ceramics Fabricated by Air Pressureless Sintering

  • Huanzhe Tong
  • Nengli Wang
  • Yuqi Zou
  • Zhaoquan Zhang
  • Wugang Fan
  • Jinxiang Shou
  • Xiyan Zhang
Article
  • 8 Downloads

Abstract

Yttrium aluminum garnet (Y3Al5O12, YAG) ceramics with a relative density of about 99.5% were fabricated by solid-state reaction and pressureless sintering using commercial α-Al2O3 and Y2O3 powders as raw materials in air. The effect of different sintering additives, e.g. tetraethyl orthosilicate (TEOS), MgO and TEOS + MgO, on the relative density and mechanical properties of the YAG ceramic samples were investigated. When the dopant content of TEOS exceeded 0.5 wt.%, a sudden grain growth appeared, as well as a residual second phase located in triangle grain boundary. MgO was more effective as a sintering additive than silica in promoting the densification of the YAG ceramics. The relative density of the ceramics gradually decreased with the increase of MgO doping content and fixed TEOS content. The mechanical properties of the YAG ceramics fabricated by pressureless sintering in air at 1600–1710°C were tested. The fracture surface morphology of the MgO-doped ceramic samples was mainly transgranular, whereas the TEOS-doped samples were mainly intergranular.

Keywords

YAG ceramics pressureless sintering additives mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The work was financially supported by the National Science and Technology Major Project of China (2016ZX06001002-005-001).

References

  1. 1.
    J. Li, Y.B. Pan, Y.P. Zeng, W.B. Liu, B.X. Jiang, and J.K. Guo, Int. J. Refract. Metals Hard Mater. 39, 44 (2013).CrossRefGoogle Scholar
  2. 2.
    V.V. Osipov, R.N. Maksimov, V.A. Shitov, K.E. Lukyashin, G. Toci, M. Vannini, M. Ciofini, and A. Lapucci, Opt. Mater. 71, 45 (2017).CrossRefGoogle Scholar
  3. 3.
    Q.H. Yang, C.G. Dou, J. Ding, and X.M. Hu, Appl. Phys. Lett. 91, 111918 (2007).CrossRefGoogle Scholar
  4. 4.
    H.M. Wang, J.Q. Qi, Z.W. Lu, T.C. Lu, and Q.Y. Wang, Scr. Mater. 142, 126 (2018).CrossRefGoogle Scholar
  5. 5.
    D. Alderighi, A. Pirri, G. Toci, M. Vannini, L. Esposito, A.L. Costa, A. Piancastelli, and M. Serantoni, Opt. Mater. 33, 205 (2010).CrossRefGoogle Scholar
  6. 6.
    C.Y. Ma, F. Tang, Z.C. Wen, M.M. Du, J.T. Zhang, J.Q. Long, X.Y. Yuan, W. Guo, Y.G. Cao, and L.J. Wang, Ceram. Int. 41, 14635 (2015).CrossRefGoogle Scholar
  7. 7.
    G.S. Corman, J. Mater. Sci. Lett. 12, 379 (1993).CrossRefGoogle Scholar
  8. 8.
    H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A.A. Kaminskii, Laser Phys. 15, 1338 (2005).Google Scholar
  9. 9.
    M. Sokol, S. Kalabukhov, V. Kasiyan, A. Rothman, M.P. Dariel, and N. Frage, Opt. Mater. 38, 204 (2014).CrossRefGoogle Scholar
  10. 10.
    K. Keller, T. Man, and T.A. Parthasarathy, Ceram. Eng. Sci. Proc. 11, 1122 (1990).CrossRefGoogle Scholar
  11. 11.
    M. Fritsch and H. Klemm, Adv. Ceram. Coat. Interfaces 27, 148 (2007).Google Scholar
  12. 12.
    R. Lach, K. Wojteczko, A. Dudek, and Z. Pędzich, J. Eur. Ceram. Soc. 34, 3373 (2014).CrossRefGoogle Scholar
  13. 13.
    W. Zhang, T.C. Lu, B.Y. Ma, N. Wei, Z.W. Lu, F. Li, Y.B. Guan, X.T. Chen, W. Liu, and L. Qi, Opt. Mater. 35, 2405 (2013).CrossRefGoogle Scholar
  14. 14.
    W.B. Liu, W.X. Zhang, J. Li, H.M. Kou, D. Zhang, and Y.B. Pan, J. Eur. Ceram. Soc. 31, 653 (2011).CrossRefGoogle Scholar
  15. 15.
    J. Liu, Q. Liu, J. Li, X.W. Ba, W.B. Liu, H.M. Kou, B.X. Jiang, Y.B. Pan, X.N. Cheng, and J.K. Guo, Phys. Status Solidi C 10, 933 (2013).CrossRefGoogle Scholar
  16. 16.
    Y.K. Li, S.M. Zhou, H. Lin, X.R. Hou, W.J. Li, H. Teng, and T.T. Jia, J. Alloys Compd. 502, 225 (2010).CrossRefGoogle Scholar
  17. 17.
    U. Kolitsch, H.J. Seifert, T. Ludwig, and F. Aldinger, J. Mater. Res. 14, 447 (1999).CrossRefGoogle Scholar
  18. 18.
    S.L. Jiang, T.C. Lu, and J. Chen, Comput. Mater. Sci. 69, 261 (2013).CrossRefGoogle Scholar
  19. 19.
    Z.W. Lu, T.C. Lu, N. Wei, B.Y. Ma, W. Zhang, F. Li, and Y.B. Guan, J. Wuhan Univ. Technol. Sci. Ed. 28, 320 (2013).CrossRefGoogle Scholar
  20. 20.
    H. Yang, X.P. Qin, J. Zhang, S.W. Wang, J. Ma, L.X. Wang, and Q.T. Zhang, J. Alloys Compd. 509, 5274 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Yang, X.P. Qin, J. Zhang, J. Ma, D.Y. Tang, S.W. Wang, and Q.T. Zhang, Opt. Mater. 34, 940 (2012).CrossRefGoogle Scholar
  22. 22.
    S. Bhattacharyya, T.K. Mukhopadhyay, K. Dana, and S. Ghatak, Ceram. Int. 37, 3463 (2011).CrossRefGoogle Scholar
  23. 23.
    A. Maître, C. Sallé, R. Boulesteix, J.F. Baumard, and Y. Rabinovitch, J. Am. Ceram. Soc. 91, 406 (2008).CrossRefGoogle Scholar
  24. 24.
    K.M. Kinsman, J. McKittrick, E. Sluzky, and K. Hesse, J. Am. Ceram. Soc. 77, 2866 (1994).CrossRefGoogle Scholar
  25. 25.
    A.J. Stevenson, X. Li, M.A. Martinez, J.M. Anderson, D.L. Suchy, E.R. Kupp, E.C. Dickey, K.T. Mueller, and G.L. Messing, J. Am. Ceram. Soc. 94, 1380 (2011).CrossRefGoogle Scholar
  26. 26.
    S.H. Lee, S. Kochawattana, G.L. Messing, J.Q. Dumm, G. Quarles, and V. Castillo, J. Am. Ceram. Soc. 89, 1945 (2006).CrossRefGoogle Scholar
  27. 27.
    D. Foster and D.P. Thompson, J. Eur. Ceram. Soc. 19, 2823 (1999).CrossRefGoogle Scholar
  28. 28.
    M.M. Kuklja, J. Phys. Condens. Mater. 12, 2953 (2000).CrossRefGoogle Scholar
  29. 29.
    Y.H. Huang, D.L. Jiang, J.X. Zhang, Z.M. Chen, Q.L. Lin, and Z.R. Huang, J. Rare Earths 32, 416 (2014).CrossRefGoogle Scholar
  30. 30.
    Y.H. Huang, D.L. Jiang, J.X. Zhang, Q.L. Lin, and Z.R. Huang, J. Am. Ceram. Soc. 93, 2964 (2010).CrossRefGoogle Scholar
  31. 31.
    T.Y. Zhou, L. Zhang, Z. Li, S. Wei, J.D. Wu, L.X. Wang, H. Yang, Z.X. Fu, H. Chen, D.Y. Tang, C.P. Wong, and Q.T. Zhang, Ceram. Int. 43, 3140 (2017).CrossRefGoogle Scholar
  32. 32.
    S.A. Markgraf, M.F. Pangborn, and R. Dieckmann, J. Cryst. Growth 180, 81 (1997).CrossRefGoogle Scholar
  33. 33.
    Z.W. Lu, T.C. Lu, N. Wei, W. Zhang, B.Y. Ma, J.Q. Qi, Y.B. Guan, X.T. Chen, H.J. Wu, and Y. Zhao, Opt. Mater. 47, 292 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Huanzhe Tong
    • 1
    • 2
  • Nengli Wang
    • 1
  • Yuqi Zou
    • 2
  • Zhaoquan Zhang
    • 2
  • Wugang Fan
    • 2
  • Jinxiang Shou
    • 2
  • Xiyan Zhang
    • 1
  1. 1.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunChina
  2. 2.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina

Personalised recommendations