Journal of Electronic Materials

, Volume 48, Issue 1, pp 386–400 | Cite as

The Study of Microstructure, Dielectric and Multiferroic Properties of (1 − x) Co0.8Cu0.2Fe2O4-xBa0.6Sr0.4TiO3 Composites

  • Ruicheng Xu
  • Shilong Zhang
  • Fengqi Wang
  • Qianwei Zhang
  • Zhengdong Li
  • Zhenhua Wang
  • Rongli GaoEmail author
  • Wei CaiEmail author
  • Chunlin Fu


Magnetoelectric multiferroic materials have attracted great attention due to their intriguing properties and potential applications. In this paper, (1 − x) Co0.8Cu0.2Fe2O4-xBa0.6Sr0.4TiO3 (x = 0, 0.4, 0.45, 0.475, 0.5, 0.525, 0.55, 1) composites were prepared by the conventional solid-state method combining with a sol–gel process. The effect of x on the microstructure, dielectric and multiferroic properties has been systematically investigated and discussed. The results confirm pure bi-phase Co0.8Cu0.2Fe2O4 and Ba0.6Sr0.4TiO3 composites except for slight impurity phases, which are indexed as BaCuO2/BaFe12O19. All the samples show uniform and relatively smooth surfaces with the mean grain size of ∼ 1.5 μm which decreases slightly with the increase of x, demonstrating the moderating effect of the ferroelectric phase on the grain size. The dielectric constant shows intense dependence on the components and the highest value is obtained when x = 0.525. The ferroelectric loops demonstrate that the coercive field and remnant polarization of the sample x = 0.525 are higher than other samples except for the pure Ba0.6Sr0.4TiO3 specimen at room temperature. The Co0.8Cu0.2Fe2O4 shows better magnetic properties and the performance of magnetization decreases with the decrease of Ba0.6Sr0.4TiO3; meanwhile, the impurity phase and inhomogeneous structure have certain influences on the magnetic properties.


Multiferroic material composite ceramic microstructure dielectric ferroelectric magnetic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The present work has been supported by the National Natural Science Foundation of China (Grant Nos. 51372283, 51402031, 61404018, 11647036), the Natural Science Foundation of Chongqing (CSTC2018jcyjAX0416, CSTC2015jcyjA50003, CSTC2015jcyjA50015, CSTC2016jcyjA0175, CSTC2016jcyjA0349), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1501310, KJ1501318), the Excellent Talent Project in University of Chongqing (Grant No. 2017-35), the Science and Technology Innovation Project of Social Undertakings and Peoples Livelihood Guarantee of Chongqing (Grant No. cstc2017shmsA0192), the Program for Innovation Teams in University of Chongqing, China (Grant No. CXTDX201601032), the Foundation of Chongqing University of Science and Technology (CK2015B05, CK2015Z13), the Latter Foundation Project of Chongqing University of Science and Technology (CKHQZZ2008002), the Scientific and Technological Achievements Foundation Project of Chongqing University of Science and Technology (CKKJCG2016328) and the Postgraduate technology innovation project of Chongqing University of Science and Technology (YKJCX1720205).


  1. 1.
    C.M. Kanamadi, J.S. Kim, H.K. Yang, and J.H. Jeong, J. Alloys Compd. 481, 781 (2009).CrossRefGoogle Scholar
  2. 2.
    R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, H.R. Zhang, J.R. Sun, and B.G. Shen, Sci. Rep. 6, 20330 (2016).CrossRefGoogle Scholar
  3. 3.
    R.L. Gao, H.W. Yang, J.R. Sun, Y.G. Zhao, and B.G. Shen, Appl. Phys. Lett. 104, 031906 (2014).CrossRefGoogle Scholar
  4. 4.
    M.M. Saad, P. Baxter, R.M. Bowman, and J.F. Scott, J. Phys. Condens. Matter 16, L451 (2016).CrossRefGoogle Scholar
  5. 5.
    R.L. Gao, L. Bai, Z.Y. Xu, Q.M. Zhang, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, and C.L. Fu, Adv. Electron. Mater. 4, 18300 (2018).Google Scholar
  6. 6.
    J.J. Ruan, C. Li, Z.S. Yuan, and D. Wu, Appl. Phys. Lett. 109, 252903 (2016).CrossRefGoogle Scholar
  7. 7.
    R. Khomeriki, L. Chotorlishvili, I. Tralle, and J. Berakdar, Nano Lett. 16, 7290 (2016).CrossRefGoogle Scholar
  8. 8.
    J.M. Hu, L.Q. Chen, and C.W. Nan, Adv. Mater. 28, 15 (2015).CrossRefGoogle Scholar
  9. 9.
    R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, X.L. Cao, X.D. Luo, and C.L. Fu, Nanoscale 10, 11750 (2018).CrossRefGoogle Scholar
  10. 10.
    T. Li, H. Wang, Z. Hu, and K. Li, Thin Solid Films 616, 1 (2016).CrossRefGoogle Scholar
  11. 11.
    J.G. Wan, H. Zhang, X. Wang, D. Panand, J.M. Liu, and G. Wang, Appl. Phys. Lett. 89, 55 (2006).Google Scholar
  12. 12.
    J.H. Peng, M. Hojamberdiev, D.L. Mao, Y.J. Zhao, P. Liu, J.P. Zhou, and G. Zhu, J. Magn. Magn. Mater. 378, 298 (2015).CrossRefGoogle Scholar
  13. 13.
    Z. Dong, Y. Pu, Z. Gao, P. Wang, X. Liu, and Z. Sun, J. Eur. Ceram. Soc. 35, 3513 (2015).CrossRefGoogle Scholar
  14. 14.
    Y.C. Lee and Y.L. Huang, J. Am. Ceram. Soc. 92, 2661 (2009).CrossRefGoogle Scholar
  15. 15.
    V.C. Flores, D.B. Baqués, and R.F. Ziolo, Acta Mater. 58, 764 (2010).CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, H. Sun, and W. Chen, Ceram. Int. 41, 8520 (2015).CrossRefGoogle Scholar
  17. 17.
    T. Walther, U. Straube, and R. Köferstein, J. Mater. Chem. 4, 4792 (2016).Google Scholar
  18. 18.
    H. Yang, H. Wang, L. He, L. Shui, and X. Yao, J. Appl. Phys. 108, 2005 (2010).Google Scholar
  19. 19.
    T. Woldu, B. Raneesh, B.K. Hazra, S. Srinath, S. Padmanapan, M.V.R. Reddy, and N. Kalarikkal, J. Alloys Compd. 691, 644 (2017).CrossRefGoogle Scholar
  20. 20.
    L. Zhang, J. Zhai, W. Mo, and X. Yao, J. Am. Ceram. Soc. 406, 213 (2010).Google Scholar
  21. 21.
    M. Vadivel, R.R. Babu, K. Ramamurthi, S. Raman, and M. Arivanandhan, J. Magn. Magn. Mater. 362, 122 (2014).CrossRefGoogle Scholar
  22. 22.
    M. Vadivel, R.R. Babu, M. Arivanandhan, Y. Hayakawa, and K. Ramamurthic, RSC Adv. 5, 27060 (2015).CrossRefGoogle Scholar
  23. 23.
    G. Tan and X. Chen, J. Magn. Magn. Mater. 327, 87 (2013).CrossRefGoogle Scholar
  24. 24.
    S. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V. Turchenko, D. Chushkova, E.L. Trukhanova, O. Viktor, E.S. Yakovenko, and L. Matzui, J. Magn. Magn. Mater. 442, 300 (2017).CrossRefGoogle Scholar
  25. 25.
    R. Grigalaitis, M.M.V. Petrović, J.D. Bobić, A. Dzunuzovic, R. Sobiestianskas, A. Brilingas, B.D. Stojanović, and J. Banys, Ceram. Int. 40, 6165 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.Chongqing Key Laboratory of Nano/Micro Composite Materials and DevicesChongqingChina

Personalised recommendations