Advertisement

Temperature-Stable Dielectric Properties from − 56°C to 248°C in (1 − x)BaTiO3-xBi(Mg0.5Sn0.5)O3 System

  • Xiaoxia Li
  • Xiuli Chen
  • Xiaobin Liu
  • Xiao Yan
  • Huanfu Zhou
  • Gaofeng Liu
  • Xu Li
  • Jie Sun
Article
  • 9 Downloads

Abstract

(1 − x)BaTiO3-xBi(Mg0.5Sn0.5)O3 [BTBMS, 0.02 ≤ x ≤ 0.12, x represents the amount of Bi(Mg0.5Sn0.5)O3 (mol.%)] ceramics that were prepared by a traditional solid state reaction technique. X-ray diffraction results demonstrated that BTBMS belongs to a homogenous solid solution. The composition with x = 0.1 has the best properties with a stable relative permittivity (εr ~ 2918), the thermal-stability of relative permittivity (Δε/ε25°C ≤ ± 15%) in a large range of temperature from − 56 to 248°C and low dielectric loss (tanδ ≤ 0.025) from − 54 to 125°C. The relaxation in the high temperature region is thermally activated, and the oxygen vacancies may be the ionic charge carriers. Moreover, energy storage efficiency reaches the maximum at x = 0.1.

Keywords

Dielectric properties phase evolution impedance thermal stability energy storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by Natural Science Foundation of China (Nos. 11664008, 11464009 and 61761015), Natural Science Foundation of Guangxi (Nos. 2017GXNSFDA198027 and 2017GXNSFFA 198011) and the Research Start-up Funds Doctor of Guilin University of Technology (No. GUTQD JJ2017133).

Supplementary material

11664_2018_6714_MOESM1_ESM.pdf (494 kb)
Supplementary material 1 (PDF 494 kb)

References

  1. 1.
    K.M. Hung, C.S. Hsieh, W.D. Yang, and H.J. Tsai, J. Electron. Mater. 36, 245 (2007).CrossRefGoogle Scholar
  2. 2.
    B. Tang, S.R. Zhang, X.H. Zhou, D. Wang, and Y. Yuan, J. Electron. Mater. 36, 1383 (2014).CrossRefGoogle Scholar
  3. 3.
    X.L. Chen, J. Chen, D.D. Ma, L. Fang, and H.F. Zhou, J. Am. Ceram. Soc. 98, 804 (2015).CrossRefGoogle Scholar
  4. 4.
    J. Chen, X.L. Chen, F. He, Y.L. Wang, H.F. Zhou, and L. Fang, J. Electron. Mater. 43, 1112 (2014).CrossRefGoogle Scholar
  5. 5.
    X.L. Chen, J. Chen, D.D. Ma, L. Fang, and H.F. Zhou, Ceram. Int. 141, 2081 (2015).CrossRefGoogle Scholar
  6. 6.
    A. Zeb and S.J. Milne, J. Eur. Ceram. Soc. 34, 3159 (2014).CrossRefGoogle Scholar
  7. 7.
    N. Baskaran and H. Chang, J. Mater. Sci. Mater. Electron. 12, 527 (2001).CrossRefGoogle Scholar
  8. 8.
    Y. Xie, S. Yin, T. Hashimoto, H. Kimura, and T. Sato, J. Mater. Sci. 44, 4834 (2009).CrossRefGoogle Scholar
  9. 9.
    S. Markovic, M. Mitric, N. Cvjeticanin, and D. Uskokovic, J. Eur. Ceram. Soc. 27, 505 (2007).CrossRefGoogle Scholar
  10. 10.
    D.D. Ma, X.L. Chen, G.S. Huang, J. Chen, H.F. Zhou, and F. Fang, Ceram. Int. 41, 7157 (2015).CrossRefGoogle Scholar
  11. 11.
    X.L. Chen, G.S. Huang, D.D. Ma, G.F. Liu, and H.F. Zhou, Ceram. Int. 43, 926 (2017).CrossRefGoogle Scholar
  12. 12.
    U.D. Venkateswaran, V.M. Naik, and R. Naik, Phys. Rev. B 58, 14256 (1998).CrossRefGoogle Scholar
  13. 13.
    J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, and A. Simon, Phys. Rev. B 69, 092104 (2004).CrossRefGoogle Scholar
  14. 14.
    D.Y. Lu, X.Y. Sun, and M. Toda, J. Phys. Chem. Solids 68, 650 (2007).CrossRefGoogle Scholar
  15. 15.
    E. Atamanik and V. Thangadurai, Mater. Res. Bull. 44, 931 (2009).CrossRefGoogle Scholar
  16. 16.
    J. Plocharski and W. Wieczoreck, Solid. State Ionics 28, 979 (1988).CrossRefGoogle Scholar
  17. 17.
    A.K. Jonscher, Nature 6, 19 (1977).Google Scholar
  18. 18.
    R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994).CrossRefGoogle Scholar
  19. 19.
    X. Yao, Z.L. Chen, and L.E. Cross, J. Appl. Phys. 54, 3399 (1984).Google Scholar
  20. 20.
    A.K. Jonscher, J. Phys. D Appl. Phys. 32, R50 (1999).CrossRefGoogle Scholar
  21. 21.
    C. Ang, Z. Yu, and L.E. Cross, Phys. Rew. B. 62, 228 (2000).CrossRefGoogle Scholar
  22. 22.
    J. Wang, S.L. Jiang, D. Jiang, T.W. Wang, and H. Yao, Ceram. Int. 39, 3657 (2013).CrossRefGoogle Scholar
  23. 23.
    H. Borkara, V.N. Singha, B.P. Singha, M. Tomarb, V. Guptac, and A. Kumar, RSC Adv. 4, 22840 (2015).CrossRefGoogle Scholar
  24. 24.
    Q. Zhang, Y. Zang, X.R. Wang, T. Ma, and Z.B. Yuan, Ceram. Int. 38, 4765 (2012).CrossRefGoogle Scholar
  25. 25.
    T. Wang, X.Y. Wei, Q.Y. Hu, L. Jin, Z. Xu, and Y.J. Feng, Mater. Sci. Eng. B 178, 1081 (2013).CrossRefGoogle Scholar
  26. 26.
    W. Cao, W. Li, T. Zhang, J. Sheng, Y. Hou, Y. Feng, Y. Yu, and W. Fei, Energy Technol. 3, 1198 (2016).CrossRefGoogle Scholar
  27. 27.
    D. Luo, R. Ma, Y.A. Wu, X.C. Zhang, Y. Liu, L. Wang, and W.B. Fu, J. Am. Ceram. Soc. 23, 3080 (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Xiaoxia Li
    • 1
  • Xiuli Chen
    • 1
  • Xiaobin Liu
    • 1
  • Xiao Yan
    • 1
  • Huanfu Zhou
    • 1
  • Gaofeng Liu
    • 1
  • Xu Li
    • 1
  • Jie Sun
    • 1
  1. 1.Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, School of Materials Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations