Journal of Electronic Materials

, Volume 48, Issue 1, pp 304–311 | Cite as

Development of SnS0.4Se0.6 Ternary Alloy on Annealing of Thermally Deposited Films

  • Arun Banotra
  • Naresh PadhaEmail author


The effect of annealing temperature on the evolution of different phases and morphological changes of thermally evaporated SnS1−xSex thin films was investigated. Thermal evaporation of Sn, S and Se constituent elements was performed under vacuum pressure ∼ 2 × 10−6 mbar in a vacuum coating unit (VCU) at room temperature. Annealing of the samples was carried out at a base vacuum pressure ∼ 1 × 10−3 mbar in a tubular furnace. Composition of the annealed samples was established as SnS0.4Se0.6 on the basis of energy dispersive x-ray analysis (EDAX). The films acquired alloy formation of SnS0.4Se0.6 with Sn at 473 K; SnS at 523 K; SnS and SnSe at 573 K; and SnSe at 623 K, respectively. The evolutions of the mixed phases of SnS0.4Se0.6 along with Sn, SnS or SnSe phases at different annealing temperatures were confirmed on the basis of x-ray diffraction (XRD). Moreover, the alterations in the morphological patterns of scanning electron microscopy (SEM) and variations in the parameters of Vis-NIR spectroscopic analysis corroborate to the results of x-ray diffraction (XRD). As the annealing temperature increased from 473 K to 623 K, a shift was observed in the peaks of different phases of SnS0.4Se0.6, causing variations in the unit cell parameters of constituent materials. Further, there was an improvement in the stoichiometry values of the constituent elements at higher annealing temperatures. The optical bandgap (Eg) values of SnS0.4Se0.6 films vary from 1.25 eV to 1.01 eV while absorption coefficient (α) values are ≥ 104 cm−1 for all annealing temperatures (i.e. 473–623 K), thereby making these materials, suitable candidates for the solar cell structures.


Tin sulphide chalcogenide SnS1−xSex optical bandgap absorption coefficient annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the financial support of university grants commission (UGC), Govt. of India under major research project (MRP) sanctioned in favour to the corresponding author. The authors also acknowledge the SSPL, DRDO (Delhi) India for providing characterization facilities for this work. A special thanks to Ms. Bhavya Padha, PG (Physics) student for proofreading of the manuscript.


  1. 1.
    S.G. Hickey, C. Waurisch, B. Rellinghaus, and A. Eychmuller, J. Am. Chem. Soc. 130, 14978 (2008).CrossRefGoogle Scholar
  2. 2.
    D.S. Koktysh, J.R. McBride, and S.J. Rosenthal, Nanoscale Res. Lett. 2, 144 (2007).CrossRefGoogle Scholar
  3. 3.
    A. Stavrinadis, J.M. Smith, C.A. Cattley, A.G. Cook, P.S. Grant, and A.A.R. Watt, Nanotechnology 21, 185202 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Xu, N. Al-Salim, C.W. Bumby, and R.D. Tilley, J. Am. Chem. Soc. 131, 15990 (2009).CrossRefGoogle Scholar
  5. 5.
    P.D. Antunez, J.J. Buckley, and R.L. Brutchey, Nanoscale 3, 2399 (2011).CrossRefGoogle Scholar
  6. 6.
    M.A. Franzman, C.W. Schlenker, M.E. Thompson, and R.L. Brutchey, J. Am. Chem. Soc. 132, 4060 (2010).CrossRefGoogle Scholar
  7. 7.
    M.V. Kovalenko, W. Heiss, E.V. Shevchenko, J. Lee, H. Schwinghammer, A.P. Alivisatos, and D.V. Talapin, J. Am. Chem. Soc. 129, 11354 (2007).CrossRefGoogle Scholar
  8. 8.
    J. Ning, K. Men, G. Xiao, B. Zou, L. Wang, Q. Dai, B. Liu, and G. Zou, Cryst. Eng. Comm. 12, 4275 (2010).CrossRefGoogle Scholar
  9. 9.
    R. Leitsmann and F. Bechstedt, ACS Nano 3, 3505 (2009).CrossRefGoogle Scholar
  10. 10.
    H.S. Im, Y. Myung, K. Park, C.S. Jung, Y.R. Lim, D.M. Jang, and J. Park, RSC. Adv. 4, 15695 (2014).CrossRefGoogle Scholar
  11. 11.
    H.S. Im, Y. Myung, Y.J. Cho, C.H. Kim, H.S. Jung, D.M. Jang, Y.R. Lim, J. Park, and J.P. Ahn, RSC Adv. 3, 10349 (2013).CrossRefGoogle Scholar
  12. 12.
    J. Malaquias, P.A. Fernandes, P.M.P. Salome, and A.F. Da Cunha, Thin Solid Films 519, 7416 (2011).CrossRefGoogle Scholar
  13. 13.
    R. Marippan, T. Mahalingam, and V. Ponnuswamy, Optik 122, 2216 (2011).CrossRefGoogle Scholar
  14. 14.
    N.K. Reddy, Y.B. Hahn, M. Devika, H.R. Sumana, and K.R. Gunasekhar, J. Appl. Phys. 101, 093522 (2007).CrossRefGoogle Scholar
  15. 15.
    C. Gao, H. Shen, L. Sun, and Z. Shen, Mater. Lett. 65, 1413 (2011).CrossRefGoogle Scholar
  16. 16.
    R.H. Bube, Photovoltaic Materials (London: Imperial College Press, 1998).CrossRefGoogle Scholar
  17. 17.
    J.Y. Kim and S.M. George, J. Phys. Chem. C 114, 17597 (2010).CrossRefGoogle Scholar
  18. 18.
    A.P. Lambros, D. Geraleas, and N.A. Economou, J. Phys. Chem. Solids 35, 537 (1974).CrossRefGoogle Scholar
  19. 19.
    M.A. Franzman, C.W. Schlenker, M.E. Thompson, and R.L. Brutchey, J. Am. Chem. Soc. 132, 4060 (2010).CrossRefGoogle Scholar
  20. 20.
    D.P. Shinde, S.K. Min, M.M. Sung, N.K. Shrestha, R.S. Mane, and S.H. Han, Mater. Lett. 115, 244 (2014).CrossRefGoogle Scholar
  21. 21.
    I. Repines, C. Beall, N. Vora, C.D. Hart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.C. Hsu, A. Goodrich, and R. Noufi, Sol. Energy Mater. Sol. Cells 101, 154 (2012).CrossRefGoogle Scholar
  22. 22.
    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, and S. Guha, Prog. Photovolt. Res. Appl. 21, 72 (2013).CrossRefGoogle Scholar
  23. 23.
    J. Ning, K. Men, G. Xiao, L. Wang, Q. Dai, B. Zou, B. Liu, and G. Zou, Nanoscale 2, 1699 (2010).CrossRefGoogle Scholar
  24. 24.
    W.J. Baumgardner, J.J. Choi, Y. Lim, and T. Hanrath, J. Am. Chem. Soc. 132, 9519 (2010).CrossRefGoogle Scholar
  25. 25.
    Y. Wang, Q. Dai, B. Zou, W.W. Yu, B. Liu, and G. Zou, Langmuir 26, 19129 (2010).CrossRefGoogle Scholar
  26. 26.
    Ariswan, H. Sutrisno, and R. Prasetyawati, in IOP Conf. Proceeding: Materials Science and Engineering (2017) pp. 012042.Google Scholar
  27. 27.
    N. Kumar, V. Sharma, U. Parihar, and R. Sachdeva, J. Nano Electron. Phys. 3, 117 (2011).Google Scholar
  28. 28.
    P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powallia, Prog. Photovolt. 19, 894 (2011).CrossRefGoogle Scholar
  29. 29.
    I. Repins, M.A. Contreras, B. Egaas, B. DeHart, J. Scgarf, C.L. Perkins, and B.T.R. Noufi, Prog. Photovolt. 16, 235 (2008).CrossRefGoogle Scholar
  30. 30.
    A. Banotra and N. Padha, Mater. Res. Express 4, 116409 (2017).CrossRefGoogle Scholar
  31. 31.
    B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd ed. (Upper Saddle River, NJ: Prentice-Hall, 2001).Google Scholar
  32. 32.
    J. Henry, K. Mohanraj, S. Kannan, S. Barathan, and G. Sivakumar, Eur. Phys. J. Appl. Phys. 61, 10301 (2013).CrossRefGoogle Scholar
  33. 33.
    H. Kafashan, F.J. Sheini, R.E. Kahrizsangi, and R. Yousefi, J. Alloys Compd. 681, 595 (2016).CrossRefGoogle Scholar
  34. 34.
    J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of JammuJammuIndia

Personalised recommendations