Journal of Electronic Materials

, Volume 48, Issue 1, pp 416–424 | Cite as

High Thermoelectric Figure of Merit in p-Type (Bi2Te3)x − (Sb2Te3)1−x Alloys Made from Element-Mechanical Alloying and Spark Plasma Sintering

  • Babu Madavali
  • Hyo-Seob Kim
  • Chul-Hee Lee
  • Dong-soo Kim
  • Soon-Jik Hong


p-Type (Bi2Te3)x − (Sb2Te3)1−x alloys with high thermoelectric properties were fabricated for waste heat energy recovery by mechanical alloying followed by spark plasma sintering. The samples’ diffraction peaks, such as the (015) positions, were slightly shifted from high to low 2θ angles with decreasing Sb2Te3 content due to the occupation of Sb sites by Bi atoms in the crystal lattice. The electrical conductivity increased with (Sb2Te3) content due to an increase in carrier concentration. The sample with the nominal composition of (Bi2Te3)0.15 + (Sb2Te3)0.85 exhibited a maximum thermoelectric figure of merit, ZT of 1.3 ± 0.06 at 400 K, and 1.07 ± 0.06 at 300 K. This enhanced ZT was successfully achieved by increasing (Sb2Te3) content, which reduces intrinsic conduction at higher temperatures by increasing carrier concentration and band gaps. The enhanced thermoelectric performance of the (Bi2Te3)0.15 + (Sb2Te3)0.85 TE materials can provide exceptional benefits for power generation and cooling applications around 400 K.


Thermoelectric materials p-type Bi-Sb-Te alloys mechanical alloying thermoelectric properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by ‘Energy Efficiency & Resources Core Technology Program’ of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (20152020001210). Part of this work also supported by the National Research Council of Science & Technology (NST) Grant by the Korea Government (MSIP) (No. CRC-15-06-KIGAM).


  1. 1.
    A.F. Ioffe, Infosearch Limited (London, 1957).Google Scholar
  2. 2.
    G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics-Basic Principles and New Materials Developments (Berlin: Springer, 2001).Google Scholar
  3. 3.
    F.J. DiSalvo, Science 285, 703 (1999).CrossRefGoogle Scholar
  4. 4.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  5. 5.
    H.S. Kim, P. Dharmaiah, B. Madavali, R. Ott, K.H. Lee, and S.J. Hong, Acta Mater. 128, 43 (2017).CrossRefGoogle Scholar
  6. 6.
    B. Madavali, H.S. Kim, K.H. Lee, and S.J. Hong, Intermetallics 82, 68 (2017).CrossRefGoogle Scholar
  7. 7.
    K. Biswas, J.Q. He, Q.C. Zhang, G.Y. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).CrossRefGoogle Scholar
  8. 8.
    B. Madavali, H.S. Kim, K.H. Lee, Y. Isoda, F. Gascoin, and S.J. Hong, Mater. Des. 112, 485 (2016).CrossRefGoogle Scholar
  9. 9.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).CrossRefGoogle Scholar
  10. 10.
    W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).CrossRefGoogle Scholar
  11. 11.
    S. Fan, J. Zhao, J. Guo, Q. Yan, J. Ma, and H.H. Hng, Appl. Phys. Lett. 96, 182104 (2010).CrossRefGoogle Scholar
  12. 12.
    J. Jiang, L.D. Chen, Q. Yao, S.Q. Bai, and Q. Wang, Mater. Chem. Phys. 92, 39 (2005).CrossRefGoogle Scholar
  13. 13.
    S.J. Hong and B.S. Chun, Mater. Sci. Eng. A 356, 345 (2003).CrossRefGoogle Scholar
  14. 14.
    J.J. Shen, T.J. Zhu, X.B. Zhao, S.N. Zhang, S.H. Yang, and Z.Z. Yin, Energy Environ. Sci. 3, 1519 (2010).CrossRefGoogle Scholar
  15. 15.
    W.M. Yim and F.D. Rosi, Solid-State Electron. 15, 1121 (1972).CrossRefGoogle Scholar
  16. 16.
    J. Black, E.M. Conwell, L. Seigle, and C.W. Spencer, J. Phys. Chem. Solids 2, 240 (1957).CrossRefGoogle Scholar
  17. 17.
    H. Kohler, Phys. Status Solidi B 74, 591 (1976).CrossRefGoogle Scholar
  18. 18.
    M.J. Smith, R.J. Knight, and C.W. Spencer, J. Appl. Phys. 33, 2186 (1962).CrossRefGoogle Scholar
  19. 19.
    C. Chen, D.W. Liu, B.P. Zhang, and J.F. Li, J. Electron. Mater. 40, 942 (2011).CrossRefGoogle Scholar
  20. 20.
    J. Horak, K. Cermak, and L. Koudelka, J. Phys. Chem. Solids 47, 805 (1986).CrossRefGoogle Scholar
  21. 21.
    L.P. Hu, T.J. Zhu, Y.G. Wang, H.H. Xie, Z.J. Xu, and X.B. Zhao, NPG Asia Mater. 6, e88 (2014).CrossRefGoogle Scholar
  22. 22.
    J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, J. Cryst. Growth 277, 258 (2005).CrossRefGoogle Scholar
  23. 23.
    B. Madavali and S.J. Hong, J. Electron. Mater. 45, 6059 (2017).CrossRefGoogle Scholar
  24. 24.
    D.M. Rowe, V.S. Shukla, and N. Savvides, Nature 290, 765 (1981).CrossRefGoogle Scholar
  25. 25.
    X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, C.J. Xiao, Q.Q. Zhang, and Z.J. Xie, Phys. D 39, 5069 (2006).CrossRefGoogle Scholar
  26. 26.
    D. Li, R.R. Sun, and X.Y. Qin, Intermetallics 19, 2002 (2011).CrossRefGoogle Scholar
  27. 27.
    M.H. Lee, K.R. Kim, J.S. Rhyee, S.D. Park, and G.J. Snyder, J. Mater. Chem. C 3, 10494 (2015).CrossRefGoogle Scholar
  28. 28.
    B. Hamdou, J. Gooth, T. Bohnert, A. Dorn, L. Akinsinde, E. Pippel, R. Zierold, and K. Nielsch, Adv. Energy Mater. 5, 1500280 (2015).CrossRefGoogle Scholar
  29. 29.
    W.J. Mir, A. Assouline, C. Livache, B. Martinez, N. Goubet, X.Z. Xu, G. Patriarche, S. Ithurria, and E. Lhuillie, Sci. Rep. 7, 9647 (2017).CrossRefGoogle Scholar
  30. 30.
    P. Zhu, Y. Imai, Y. Isoda, Y. Shinohara, X. Jia, and G. Zou, Mater. Trans. 46, 2690 (2005).CrossRefGoogle Scholar
  31. 31.
    H. Wu, J. Carrete, Z. Zhang, Y. Qu, Z. Shen, Z. Wang, L.D. Zhao, and J. He, NPG Asia Mater. 6, e108 (2014).CrossRefGoogle Scholar
  32. 32.
    H.J. Goldsmid and R.W. Douglas, J. Appl. Phys. 5, 386 (1954).Google Scholar
  33. 33.
    R.J. Mehta, Y.L. Zhang, C. Karthik, B. Singh, R.W. Siegel, T.B. Tasciuc, and G. Ramanath, Nat. Mater. 11, 233 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Babu Madavali
    • 1
  • Hyo-Seob Kim
    • 2
  • Chul-Hee Lee
    • 1
  • Dong-soo Kim
    • 3
  • Soon-Jik Hong
    • 1
  1. 1.Division of Advanced Materials Engineering and Institute for Rare MetalsKongju National UniversityCheonanRepublic of Korea
  2. 2.Liquid Processing and Casting Technology, R&D GroupKorea Institute of Industrial TechnologyIncheonRepublic of Korea
  3. 3.Powder and Ceramics DivisionKorea Institute of Materials ScienceChangwonRepublic of Korea

Personalised recommendations