Journal of Electronic Materials

, Volume 48, Issue 1, pp 278–285 | Cite as

Hydrothermal-Assisted Synthesis of TiO2@NiMoO4 Nanocomposites and Evaluation of Their Photocatalysis Properties

  • Raziyeh Bakhshali-Dehkordy
  • Zahra AghajaniEmail author


In the current study, hydrothermal assistance was successfully applied to synthesize TiO2 nanoparticles and TiO2@NiMoO4 nanocomposites in the presence of beet juice as the green surfactant, as well as green sensitizer. Also, different beet juice concentrations were tested to find optimum morphology and particle size. In addition, the structural and morphological properties of as-obtained products were characterized by XRD, SEM, EDS, and FT-IR spectroscopy. The possibility of adding NiMoO4 to TiO2 nanoparticles was explored in order to enhance photocatalytic and optical properties. Degradation results showed that destruction percentages of methylene blue (MB) under visible light were 89% and 98% for TiO2 nanoparticles and TiO2@NiMoO4 nanocomposites, respectively. Improving the photocatalysis yield of TiO2 can be described as the result of electron and hole transformation between TiO2 to NiMoO4 , which facilitates the separation of the electron–hole pairs. FTIR spectroscopy results confirmed the degradation of MB by TiO2@NiMoO4 nanocomposites. The UV–Vis results showed that coupling of NiMoO4 causes to create red-shift in absorption edge.


TiO2@NiMoO4 hydrothermal assistance green sensitizer photocatalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors acknowledge the kind financial supports of the Research Council of Qom Branch, Islamic Azad University, Qom, Iran (Grant No. 986088).


  1. 1.
    Y. Waghadkar, S. Arbuj, M. Shinde, R. Ballal, S.B. Rane, S. Gosavi, H. Fouad, and R. Chauhan, J. Electron. Mater. 47, 2687 (2018).Google Scholar
  2. 2.
    M. Ramezani and S.M. Hosseinpour-Mashkani, J. Electron. Mater. 46, 1371 (2017).CrossRefGoogle Scholar
  3. 3.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, and A. Sobhani-Nasab, J. Electron. Mater. 45, 3612 (2016).CrossRefGoogle Scholar
  4. 4.
    M. Ramezani and S.M. Hosseinpour-Mashkani, J. Electron. Mater. 46, 1371–1377 (2017).CrossRefGoogle Scholar
  5. 5.
    A. Sobhani-Nasab, M. Maddahfar, and S.M. Hosseinpour-Mashkani, J. Mol. Liq. 216, 1 (2016).CrossRefGoogle Scholar
  6. 6.
    M.S. Jyothi, P. D’Souza Laveena, R. Shwetharani, and Geetha R. Balakrishna, Mater. Res. Bull. 74, 478–484 (2016).CrossRefGoogle Scholar
  7. 7.
    X. Sun, J. Wu, F. Tian, W. Zhang, and Q. Li, Mater. Res. Bull. 103, 247 (2018).CrossRefGoogle Scholar
  8. 8.
    L.D. Than, N.S. Luong, V.D. Ngo, N.M. Tien, T.N. Dung, N.M. Nghia, N.T. Loc, V.T. Thu, and T.D. Lam, J. Electron. Mater. 46, 158 (2017).CrossRefGoogle Scholar
  9. 9.
    M. Behpour, M. Mehrzad, S.M. Ghoreishi, and S.M. Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 27, 4483 (2016).CrossRefGoogle Scholar
  10. 10.
    S. Sana, H.A. Habib, S.M. Hussain, and N. Ul-Haq, J. Electron. Mater. 44, 4622 (2015).CrossRefGoogle Scholar
  11. 11.
    J.C. Contreras-Ruiz, S. Martínez-Gallegos, E. Ordoñez, J.C. González-Juárez, and J.L. García-Rivas, J. Electron. Mater. 46, 1658 (2017).CrossRefGoogle Scholar
  12. 12.
    N.C. Khang, D.M. Thanh, and N.V. Minh, J. Electron. Mater. 45, 5375 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Ramin-Gul, M. Khan, Z. Yi, B. Wu, and U. Fawad, J. Electron. Mater. 46, 6440 (2017).CrossRefGoogle Scholar
  14. 14.
    S.T. Zhang, Y.R. Ruan, C. Liu, P. Wang, and Y.Q. Ma, Mater. Res. Bull. 95, 503 (2017).CrossRefGoogle Scholar
  15. 15.
    I. Bouzaida, C. Ferronato, J.M. Chovelon, M.E. Rammah, and J.M. Herrmann, J. Photochem. Photobiol. A Chem. 168, 23 (2004).CrossRefGoogle Scholar
  16. 16.
    A. Aguedach, S. Brosillon, J. Morvan, and E.K. Lhadi, Appl. Catal. B Environ. 57, 55 (2004).CrossRefGoogle Scholar
  17. 17.
    K.Y. Jung and S.B. Park, Appl. Catal. A Environ. 25, 249 (2000).CrossRefGoogle Scholar
  18. 18.
    J. Choi, H. Park, and M.R. Hoffmann, J. Phys. Chem. C 114, 783 (2010).CrossRefGoogle Scholar
  19. 19.
    X.H. Yang, Z. Li, Ch Sun, H.G. Yang, and C. Li, Chem. Mater. 23, 3486 (2011).CrossRefGoogle Scholar
  20. 20.
    C.W. Jackie and Y. Ying, Chem. Mater. 11, 3113 (1999).CrossRefGoogle Scholar
  21. 21.
    A. Hernández-Gordillo, A. Hernández-Arana, A. Campero, and L.I. Vera-Robles, Langmuir 30, 4084 (2014).CrossRefGoogle Scholar
  22. 22.
    H. Choi, Y. Jin, K. Rajender, S.V. Dionysios, and D. Dionysiou, Chem. Mater. 18, 5377 (2006).CrossRefGoogle Scholar
  23. 23.
    J. Tang, F. Redl, Y. Zhu, T.S. Louis, E.B. Michael, and L. Steigerwald, Nano Lett. 5, 543 (2005).CrossRefGoogle Scholar
  24. 24.
    Z. Xiong, H. Dou, J. Pan, J. Ma, C. Xu, and X. Zhao, Cryst. Eng. Commun. 12, 3455 (2010).CrossRefGoogle Scholar
  25. 25.
    G. Fu, P.S. Vary, and C.T. Lin, J. Phys. Chem. B. 109, 8889 (2005).CrossRefGoogle Scholar
  26. 26.
    W. Choi, Catal. Surv. Asia 10, 16 (2006).CrossRefGoogle Scholar
  27. 27.
    C. Liang, C.G. Niu, H. Guo, D.W. Huang, X.J. Wen, S.F. Yanga, and G.M. Zeng, Catal. Sci. Technol. 8, 1161 (2018).CrossRefGoogle Scholar
  28. 28.
    E. Karaoglu and A. Baykal, J Supercond Nov Magn. 27, 2041 (2014).CrossRefGoogle Scholar
  29. 29.
    L. Wang, H. Ang, A. Wang, and M. Liu, Chin. J. Catal. 30, 939 (2009).CrossRefGoogle Scholar
  30. 30.
    S.M. Hosseinpour-mashkani, A. Sobhani-Nasab, and M. Mehrzad, J. Mater. Sci. Mater. Electron. 27, 5758 (2016).CrossRefGoogle Scholar
  31. 31.
    M. Ramezani, S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, and H. Ghasemi-Estarki, J. Mater. Sci. Mater. Electron. 26, 7588 (2015).CrossRefGoogle Scholar
  32. 32.
    B. Senthilkumar and R.K. Selvan, J. Colloid Interface Sci. 426, 280 (2014).CrossRefGoogle Scholar
  33. 33.
    A. Kaddouria, R. Anouchinskya, C. Mazzocchiaa, L.M. Madeirab, and M.F. Portelab, Catal. Today 40, 201 (1998).CrossRefGoogle Scholar
  34. 34.
    B. Pillay, M.R. Mathebula, and H.B. Friedrich, Appl. Catal. A 361, 57 (2009).CrossRefGoogle Scholar
  35. 35.
    R.A. Madeley and S.E. Wanke, Appl. Catal. 39, 295 (1988).CrossRefGoogle Scholar
  36. 36.
    L.M. Madeira, M.F. Portela, and C. Mazzocchia, Catal. Rev. 46, 53 (2004).CrossRefGoogle Scholar
  37. 37.
    K.S. Park, S.D. Seo, H.W. Shim, and D.W. Kim, Nanoscale Res. Lett. 7, 35 (2012).CrossRefGoogle Scholar
  38. 38.
    W. Xiao, J.S. Chen, C.M. Li, R. Xu, and X.W. Lou, Chem. Mater. 22, 746 (2010).CrossRefGoogle Scholar
  39. 39.
    R.N. Singh, M.R. Awasthi, and A.S.K. Sinha, J. Solid State Electrochem. 13, 1613 (2009).CrossRefGoogle Scholar
  40. 40.
    M. Ramezani, A. Sobhani-Nasab, and S.M. Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 26, 4848 (2015).CrossRefGoogle Scholar
  41. 41.
    S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, Biotechnol. Prog. 22, 577 (2006).CrossRefGoogle Scholar
  42. 42.
    A. Ahmad, S. Senapati, M.I. Khan, R. Kumar, and M. Sastry, Langmuir 19, 3550 (2003).CrossRefGoogle Scholar
  43. 43.
    V. Umapathy, P. Neeraja, A. Manikandan, and P. Ramu, Trans. Nonferr. Met. Soc. China 27, 1785 (2017).CrossRefGoogle Scholar
  44. 44.
    J. Wruss, G. Waldenberger, S. Huemer, P. Uygun, P. Lanzerstorfer, U. Müller, O. Häglinger, and J. Weghuber, J. Food Compos. Anal. 42, 46 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Qom BranchIslamic Azad UniversityQomIran

Personalised recommendations