Advertisement

Effect of Structure on the Electronic, Magnetic and Thermal Properties of Cubic Fe2MnxNi1−xSi Heusler Alloys

  • S. Noui
  • Z. Charifi
  • H. Baaziz
  • G. Uğur
  • Ş. Uğur
Article
  • 9 Downloads

Abstract

The concentration dependence of the phase stability, half-metallicity, thermal and magnetic properties of Fe2MnxNi1−xSi (0 ≤ x ≤ 1) Heusler alloys in two structures, Cu2MnAl (Fm3m) and Hg2TiCu (F43m), were investigated at the ab initio level using density functional theory. The exchange–correlation term was assessed using local spin density (LSDA) and generalized gradient approximation (GGA) along with Hubbard-U (U) corrections. Spin-polarized electronic band structure calculations for Fe2MnxNi1−xSi (0 ≤ x ≤ 1) alloys in their Cu2MnAl- and Hg2TiCu-structure have been carried out. These results indicate that the Hg2CuTi-type structure is more stable than the Cu2MnAl-type structure with increasing Mn content, from x = 0 to 0.25 using LSDA. No significant differences were observed using LSDA + U over GGA. The full Heusler compounds Fe2MnxNi1−xSi (0 ≤ x ≤ 1) are half metals in the Cu2MnAl-type structure for x = 0.75 and x = 1, and behave like a metal in the CuHg2Ti-type. The minority bands exhibit a band gap of about 0.11 (0.56) eV for Fe2Mn0.75Ni0.25Si using GGA (LSDA + U). Using the GGA scheme, the obtained band energy was smaller than that obtained by using the LSDA + U approach. These results clearly show that the lattice parameter, bulk modulus and total magnetic moment vary quadratically with Mn doping. The main contribution to the total magnetic moment comes from Mn or Fe atoms in B sites in both types of structures. The total magnetic moment of Fe2MnxNi1−xSi (0 ≤ x ≤ 1) alloys is typically in the range of 2–3 μB in the Cu2MnAl-Type and 3–4 μB in Hg2TiCu-Type per formula unit and consists of an average of 2 μB per Mn atom and less than 1 μB per Fe atom in the Cu2MnAl-Type, and an average of 2 μB per Mn atom and around 1 μB per Fe atom in the B site Hg2TiCu-Type. Using the quasi-harmonic Debye model, the concentration and temperature effects on the unit cell volume, thermal expansion coefficient, bulk modulus, the Debye temperature and heat capacity, for Fe2MnxNi1−xSi (0 ≤ x ≤ 1) Heusler alloys are investigated and analysed.

Keywords

Half-metallicity Heusler alloys spin polarization chemical disorder electronic structure thermodynamic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.E. Treger, Science 294, 1488 (2001).CrossRefGoogle Scholar
  2. 2.
    X. Wu, J. Han, Y. Feng, G. Li, C. Wang, G. Dingb, and G. Gao, RSC Adv. 7, 44499 (2017).CrossRefGoogle Scholar
  3. 3.
    X. Li, X. Wu, and J. Yang, J. Am. Chem. Soc. 136, 11065 (2014).CrossRefGoogle Scholar
  4. 4.
    S. Zhu, C.T. Yip, S. Peng, K. Wu, K.L. Yao, C.L. Mak, and C. Lam, Phys. Chem. Chem. Phys. (2018).  https://doi.org/10.1039/C7CP08635K.CrossRefGoogle Scholar
  5. 5.
    B. Xu, M. Zhang, and H. Yan, Phys. Status Solidi B 248, 2870 (2011).CrossRefGoogle Scholar
  6. 6.
    N. Kima, R. Kimb, and J. Yuc, J. Magn. Magn. Mater. (2018).  https://doi.org/10.1016/j.jmmm.2018.03.034.CrossRefGoogle Scholar
  7. 7.
    I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).CrossRefGoogle Scholar
  8. 8.
    S. Picozzi, A. Continenza, and A.J. Freeman, Phys. Rev. B 66, 094421 (2002).CrossRefGoogle Scholar
  9. 9.
    G.H. Fecher, H.C. Kandpal, S. Wurmehl, and C. Felser, J. Appl. Phys. 99, 08J106 (2006).CrossRefGoogle Scholar
  10. 10.
    I. Galanakis and E. ŞaŞıoğlu, Appl. Phys. Lett. 99, 052509 (2011).CrossRefGoogle Scholar
  11. 11.
    R.A. De Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).CrossRefGoogle Scholar
  12. 12.
    Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. 88, 192508 (2006).CrossRefGoogle Scholar
  13. 13.
    Y. Du, G.Z. Xu, E.K. Liu, G.J. Li, H.G. Zhang, S.Y. Yu, W.H. Wang, and G.H. Wu, J. Magn. Magn. Mater. 335, 101 (2013).CrossRefGoogle Scholar
  14. 14.
    T.M. Nakatani, A. Rajanikanth, Z. Gercsi, Y.K. Takahashi, K. Inomata, and K. Hono, J. Appl. Phys. 102, 033916 (2007).CrossRefGoogle Scholar
  15. 15.
    R. Shan, H. Sukegawa, W.H. Wang, M. Kodzuka, T. Furubayashi, T. Ohkubo, S. Mitani, K. Inomata, and K. Hono, Phys. Rev. Lett. 102, 246601 (2009).CrossRefGoogle Scholar
  16. 16.
    W.H. Wang, M. Przybylski, W. Kuch, L.I. Chelaru, J. Wang, Y.F. Lu, J. Barthel, H.L. Meyerheim, and J. Kirschner, Phys. Rev. B 71, 144416 (2005).CrossRefGoogle Scholar
  17. 17.
    S. Fujii, S. Sugimura, S. Ishida, and S. Asano, J. Phys. Condens. Matter 2, 8583 (1990).CrossRefGoogle Scholar
  18. 18.
    P.J. Brown, K.-U. Neumann, P.J. Webster, and K.R.A. Ziebeck, J. Phys. Condens. Matter 12, 1827 (2000).CrossRefGoogle Scholar
  19. 19.
    M.P. Raphael, B. Ravel, Q. Huang, M.A. Willard, S.F. Cheng, B.N. Das, R.M. Stroud, K.M. Bussmann, J.H. Claassen, and V.G. Harris, Phys. Rev. B66, 104429 (2002).CrossRefGoogle Scholar
  20. 20.
    U. Geiersbach, A. Bergmann, and K. Westerholt, J. Magn. Magn. Mater. 240, 546 (2002).CrossRefGoogle Scholar
  21. 21.
    S. Kämmerer, S. Heitmann, D. Meyners, D. Sudfeld, A. Thomas, A. Hütten, and G. Reiss, J. Appl. Phys. 93, 7945 (2003).CrossRefGoogle Scholar
  22. 22.
    L.J. Singh, Z.H. Barber, Y. Miyoshi, Y. Bugoslavsky, W.R. Branford, and L.F. Cohen, Appl. Phys. Lett. 84, 2367 (2004).CrossRefGoogle Scholar
  23. 23.
    W.H. Wang, M. Przybylskia, W. Kuch, L.I. Chelaru, J. Wang, Y.F. Lu, J. Barthel, and J. Kirschner, J. Magn. Magn. Mater. 286, 336 (2005).CrossRefGoogle Scholar
  24. 24.
    V.K. Lazarov, K. Yoshida, J. Sato, P.J. Hasnip, M. Oogane, A. Hirohata, and Y. Ando, Appl. Phys. Lett. 98, 242508 (2011).CrossRefGoogle Scholar
  25. 25.
    N. Tezuka, N. Ikeda, F. Mitsuhashi, and S. Sugimoto, Appl. Phys. Lett. 94, 162504 (2009).CrossRefGoogle Scholar
  26. 26.
    T. Ambrose, J.J. Krebs, and G.A. Prinz, Appl. Phys. Lett. 76, 3280 (2000).CrossRefGoogle Scholar
  27. 27.
    T. Block, C. Felser, G. Jakob, J. Ensling, B. Mühling, P. Gütlich, and R.J. Cava, J. Solid State Chem. 176, 646 (2003).CrossRefGoogle Scholar
  28. 28.
    S. Ishida, S. Mizutani, S. Fujii, and S. Asano, Mater. Trans. 47, 464 (2006).CrossRefGoogle Scholar
  29. 29.
    S. Fujii, S. Ishida, and S. Asano, J. Phys. Soc. Jpn. 64, 185 (1995).CrossRefGoogle Scholar
  30. 30.
    K.A.R. Ziebeck and P.J. Webster, Philos. Mag. 34, 973 (1976).CrossRefGoogle Scholar
  31. 31.
    M. Kawakami, Physica B 186, 1037 (1993).CrossRefGoogle Scholar
  32. 32.
    S. Fujii, S. Ishida, and S. Asano, J. Phys. Soc. Jpn. 63, 1881 (1994).CrossRefGoogle Scholar
  33. 33.
    B. Hamad and Q.M. Hu, Phys. Status Solidi B 248, 2893 (2011).CrossRefGoogle Scholar
  34. 34.
    B. Balke, G.H. Fecher, and C. Felser, Appl. Phys. Lett. 90, 242503 (2007).CrossRefGoogle Scholar
  35. 35.
    T. Kubota, S. Tsunegi, M. Oogane, S. Mizukami, T. Miyazaki, H. Naganuma, and Y. Ando, Appl. Phys. Lett. 94, 122504 (2009).CrossRefGoogle Scholar
  36. 36.
    S. Ishida, D. Nagatomo, S. Fujiiand, and S. Asano, Mater. Trans. 49, 114 (2008).CrossRefGoogle Scholar
  37. 37.
    A. Otero-de-la-Roza, D. Abbasi-Pérez, and V. Luaña, Comput. Phys. Commun. 182, 2232 (2011).CrossRefGoogle Scholar
  38. 38.
    A. Otero-de-la-Roza and V. Luaña, Comput. Phys. Commun. 182, 1708 (2011).CrossRefGoogle Scholar
  39. 39.
    F.S.W. Heusler and E. Haupt, Verh. Dtsch. Phys. Ges. 5, 219 (1903).Google Scholar
  40. 40.
    S. Picozzi, A. Continenza, and A.J. Freeman, Phys. Rev. B 69, 094423 (2004).CrossRefGoogle Scholar
  41. 41.
    K. Özdoğan and I. Galanakis, J. Magn. Magn. Mater. 321, L34 (2009).CrossRefGoogle Scholar
  42. 42.
    T.J. Burch, T. Litrenta, and J.I. Budnick, Phys. Rev. Lett. 33, 421 (1974).CrossRefGoogle Scholar
  43. 43.
    V. Niculescu, K. Raj, T.J. Burch, and J.I. Budnick, Phys. Rev. B 13, 3167 (1976).CrossRefGoogle Scholar
  44. 44.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universitat, Wien, Austria. ISBN 3-9501031-1-1-2 (2001).Google Scholar
  45. 45.
    J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
  46. 46.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  47. 47.
    H.C. Kandpal, G.H. Fecher, C. Felser, and G. Schönhense, Phys. Rev. B73, 094422 (2006).CrossRefGoogle Scholar
  48. 48.
    D.P. Rai, A. Shankar, J. Sandeep, L.R. Singh, M. Jamal, S.J. Hashemifar, M.P. Ghimire, and R.K. Thapa, Armen. J. Phys. 5, 105 (2012).Google Scholar
  49. 49.
    H.C. Kandpal, G.H. Fecher, and C. Felser, J. Phys. D Appl. Phys. 40, 1507 (2007).CrossRefGoogle Scholar
  50. 50.
    T. Bandyopadhyay and D.D. Sarma, Phys. Rev. B 39, 3517 (1989).CrossRefGoogle Scholar
  51. 51.
    O. Jepsen and O.K. Andersen, Solid State Commun. 9, 1763 (1971).CrossRefGoogle Scholar
  52. 52.
    Y.J. Zhang, W.H. Wang, H.G. Zhang, E.K. Liu, R.S. Ma, and G.H. Wu, Physica B 420, 86 (2013).CrossRefGoogle Scholar
  53. 53.
    B. Ravel, M.P. Raphael, V.G. Harris, and Q. Huang, Phys. Rev. B 65, 184431 (2002).CrossRefGoogle Scholar
  54. 54.
    J. Karel, F. Bernardi, C. Wang, R. Stinshoff, N.-O. Born, S. Ouardi, U. Burkhardt, G.H. Fecher, and C. Felserhys, Chem. Chem. Phys. 17, 31707 (2015).CrossRefGoogle Scholar
  55. 55.
    S. Wurmehl, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, M. Wόjcik, B. Balke, C.G.F. Blum, V. Ksenofontov, G.H. Fecher, and C. Felser, Appl. Phys. Lett. 91, 052506 (2007).CrossRefGoogle Scholar
  56. 56.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).CrossRefGoogle Scholar
  57. 57.
    H. Luo, Z. Zhu, M. Li, S. Xu, H. Liu, J. Qu, Y. Li, and G. Wu, J. Phys. D Appl. Phys. 40, 7121 (2007).CrossRefGoogle Scholar
  58. 58.
    M. Belkhouane, S. Amari, A. Yakoubi, A. Tadjer, S. Méçabih, G. Murtaza, S. BinOmran, and R. Khenata, J. Magn. Magn. Mater. 377, 211 (2015).CrossRefGoogle Scholar
  59. 59.
    S. Plogmann, T. Schlathölter, J. Braun, M. Neumann, Y.M. Yarmoshenko, M.V. Yablonskikh, E.I. Shreder, E.Z. Kurmaev, A. Wrona, and A. Slebarski, Phys. Rev. B60, 6428 (1999).CrossRefGoogle Scholar
  60. 60.
    M. Pugaczowa-Michalska, A. Go, and L. Dobrzyński, Phys. Status Solidi B 242, 463 (2005).CrossRefGoogle Scholar
  61. 61.
    D.C. Gupta and I.H. Bhat, Mater. Chem. Phys. 146, 303 (2014).CrossRefGoogle Scholar
  62. 62.
    H. Mori, Y. Odahara, D. Shigyo, T. Yoshitake, and E. Miyoshi, Thin Solid Films 520, 4979 (2012).CrossRefGoogle Scholar
  63. 63.
    B. Hamad, Z. Charifi, H. Baaziz, and F. Soyalp, J. Magn. Magn. Mater. 324, 3345 (2012).CrossRefGoogle Scholar
  64. 64.
    Z. Charifi, B. Hamad, H. Baaziz, and F. Soyalp, J. Magn. Magn. Mater. 393, 139 (2015).CrossRefGoogle Scholar
  65. 65.
    P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).CrossRefGoogle Scholar
  66. 66.
    P. Debye, Ann. Phys. 39, 789 (1912).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Matter Science, Faculty of ScienceUniversity of Batna 1BatnaAlgeria
  2. 2.Department of Physics, Faculty of ScienceUniversity of M’silaM’silaAlgeria
  3. 3.Laboratory of Physics and Chemistry of MaterialsUniversity of M’silaM’silaAlgeria
  4. 4.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey

Personalised recommendations