Journal of Electronic Materials

, Volume 48, Issue 3, pp 1335–1341 | Cite as

Mössbauer Studies of LixFe1/3Mn1/3Ni1/3PO4 Cathode Materials

  • Hyunkyung Choi
  • Soyeon Barng
  • Chul Sung KimEmail author
5th International Conference of Asian Union of Magnetics Societies
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)


We report on the crystallographic and magnetic properties of LixFe1/3Mn1/3Ni1/3 PO4 (x = 0, 1) using x-ray diffraction (XRD), a vibrating sample magne- tometer (VSM), and Mössbauer spectroscopy. XRD analysis confirmed that the samples have an orthorhombic structure with space group Pnma. From the VSM measurements the samples exhibited an antiferromagnetic behavior with a Curie–Weiss temperature θ = − 162 K for x = 1, and θ = − 303 K for x = 0. The Néel temperature (TN) and spin reorientation temperature (TS) were determined to be 40 K and 10 K for x = 1, and 66 K and 25 K for x = 0. The hyperfine field (Hhf) of LiFe1/3Mn1/3Ni1/3PO4 had smaller values than that of Fe1/3Mn1/3Ni1/3PO4 due to the magnitude of the nearest-neighbor superexchange interaction. Isomer shift (δ) values indicate that the charge states of LiFe1/3Mn1/3Ni1/3PO4 are ferrous (Fe2+), and that of Fe1/3Mn1/3Ni1/3PO4 are ferric (Fe3+). The larger values of the electric quadrupole splitting (δEQ) for the Fe2+ phase compared to the Fe3+ phased originated from the different lattice and valence electron contributions due to the crystalline field and valence transition. Debye temperatures (θD) of 338 ± 5 K (x = 1), and 370 ± 5 K (x = 0) were obtained for the samples.


Mössbauer spectroscopy Curie–Weiss temperature Debye temperature crystalline field spin reorientation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Mid-career Researcher Program through the National Research Foundation of Korea (NRF) with a Grant funded by the Ministry of Education, Science and Technology (MEST) (NRF-2017R1A2B2012241).


  1. 1.
    L. Liu, G. Chen, B. Du, Y. Cui, X. Ke, J. Liu, Z. Guo, Z. Shi, H. Zhang, and S. Chou, Electrochim. Acta 255, 205 (2017).CrossRefGoogle Scholar
  2. 2.
    R. Kashi, M. Khosravi, and M. Mollazadeh, Mater. Chem. Phys. 203, 319 (2018).CrossRefGoogle Scholar
  3. 3.
    A. Örnek, Chem. Eng. J. 331, 501 (2018).CrossRefGoogle Scholar
  4. 4.
    J.W. Fergus, J. Power Sources 195, 939 (2010).CrossRefGoogle Scholar
  5. 5.
    Y.G. Guo, J.S. Hu, and L.J. Wan, Adv. Mater. 20, 2878 (2008).CrossRefGoogle Scholar
  6. 6.
    R. Hanafusa, Y. Oka, and T. Nakamura, J. Electrochem. Soc. 162, A3045 (2015).CrossRefGoogle Scholar
  7. 7.
    A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, and J.B. Goodenough, J. Electrochem. Soc. 144, 1609 (1997).CrossRefGoogle Scholar
  8. 8.
    L. Bao, G. Xu, X.L. Sun, H. Zeng, R.Y. Zhao, X. Yang, G. Shen, G.R. Han, and S.X. Zhou, J. Alloys Compd. 708, 685 (2017).CrossRefGoogle Scholar
  9. 9.
    C. Jin, X.D. Zhang, W. He, Y. Wang, H.M. Li, Z. Wang, and Z.Y. Bi, RSC Adv. 4, 15332 (2014).CrossRefGoogle Scholar
  10. 10.
    S.M. Rommel, N. Schall, C. Brünig, and R. Weihrich, Monatsh. Chem. 145, 385 (2014).CrossRefGoogle Scholar
  11. 11.
    N. Priyadharsini, P. Rupa Kasturi, A. Shanmugavani, S. Surendran, S. Shanmugapriya, and R. Kalai Selvan, J. Phys. Chem. Solids 119, 183 (2018).CrossRefGoogle Scholar
  12. 12.
    C. Hu, B. Wang, H. Yi, J. Zhang, Y. Hu, and J. Li, Int. J. Electrochem. Sci. 13, 5824 (2018).CrossRefGoogle Scholar
  13. 13.
    D.D. Lecce, T. Hu, and J. Hassoun, J. Alloys Compd. 693, 730 (2017).CrossRefGoogle Scholar
  14. 14.
    J. Moskon, M. Pivko, I. Jerman, E. Tchernychova, N. Zabukovec Logar, M. Zorko, V.S. Selih, R. Dominko, and M. Gaberscek, J. Power Sources 303, 97 (2016).CrossRefGoogle Scholar
  15. 15.
    M. Minakshi, P. Singh, D. Appadoo, and D.E. Martin, Electrochim. Acta 56, 4356 (2011).CrossRefGoogle Scholar
  16. 16.
    M.K. Devaraju, Q.D. Truong, H. Hyodo, Y. Sasaki, and I. Honma, Sci. Rep. 5, 11041 (2015).CrossRefGoogle Scholar
  17. 17.
    H. Yuan, X.Y. Wang, Q. Wu, H.B. Shu, and X.K. Yang, J. Alloys Compd. 675, 187 (2016).CrossRefGoogle Scholar
  18. 18.
    H. Choi, H.J. Kim, I.-B. Shim, I.K. Lee, and C.S. Kim, Mater. Res. Bull. 93, 361 (2017).CrossRefGoogle Scholar
  19. 19.
    T.W. Sinor, J.D. Standifird, F. Davanloo, K.N. Taylor, C. Hong, J.J. Carroll, and C.B. Collins, Appl. Phys. Lett. 64, 1221 (1994).CrossRefGoogle Scholar
  20. 20.
    E.A. Zvereva, O.A. Savelieva, Y.D. Titov, M.A. Evstigneeva, V.B. Nalbandyan, C.N. Kao, J.-Y. Lin, I.A. Presniakov, A.V. Sobolev, S.A. Ibragimov, M. Abdel-Hafiez, Y. Krupskaya, C. Jähne, G. Tan, R. Klingeler, B. Büchner, and A.N. Vasiliev, Dalton Trans. 42, 1550 (2013).CrossRefGoogle Scholar
  21. 21.
    W. Kim, C.H. Rhee, H.J. Kim, S.J. Moon, and C.S. Kim, Appl. Phys. Lett. 96, 242505 (2010).CrossRefGoogle Scholar
  22. 22.
    C.S. Kim, I.B. Shim, M.Y. Ha, H. Choi, and J.C. Sur, J. Korean Phys. Soc. 23, 166 (1990).Google Scholar
  23. 23.
    H.N. Ok and Y.K. Kim, Phys. Rev. B 36, 5120 (1987).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsKookmin UniversitySeoulKorea

Personalised recommendations