Skip to main content
Log in

Tuning the Electronic Properties of Graphene Oxide Nanoribbons Through Different Oxygen Doping Configurations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic properties of armchair graphene oxide nanoribbons (AGONRs) with different doped oxygen configurations are studied based on density functional theory using first principle calculations. The electronic properties of the AGONRs are tuned by different oxygen configurations for top edges, center, bottom edges and fifth width. The AGONRs for top-edge O doping configuration are indirect band gap semiconductors with an energy gap of 1.268 eV involving hybridization among C-2p and O-2s, 2p electrons and electrical conductivity of oxygen atoms. The center and bottom edges are direct band gap semiconductors with 1.317 eV and 1.151 eV, respectively. The valence band is contributed from C-2p, O-2p and H-1s for top-edge O doping. The electronic properties of AGONRs are changed due to localization in −2.94 eV of O-2p states. The center O-doped AGONRs are n-type semiconductors with Fermi levels near the conduction band bottom. This is due to hybridization among C-2s, 2p and O-2p electrons. However, bottom-edge O-doped AGONRs are p-type semiconductors, due to the electrical conductivity of oxygen atoms. The fifth-width O-doped AGONRs are indirect band gap semiconductors with an energy gap of 0.375 eV. The projected density of states shows that the localization and hybridization between C-2 s, 2p, O-2p and H-1s electronic states are rising in the conduction band and valence band from the projected density of states. The localization is induced by O-2p electronic states at a Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  Google Scholar 

  3. L. Dössel, L. Gherghel, X. Feng, and K. Müllen, Angew. Chem. Int. Ed. 50, 2540 (2011).

    Article  Google Scholar 

  4. P. Jangid, D. Pathan, and A. Kottantharayil, Carbon 132, 65 (2018).

    Article  CAS  Google Scholar 

  5. Y.W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  6. N.L. Teradal, A.K. Satpati, and J. Seetharamappa, J. Electroanal. Chem. 797, 89 (2017).

    Article  CAS  Google Scholar 

  7. T.C. Lin, Y.S. Li, W.H. Chiang, and Z. Pei, Biosens. Bioelectron. 89, 511 (2017).

    Article  CAS  Google Scholar 

  8. P. Tseng, C.H. Chen, S.A. Hsu, and W.J. Hsueh, Phys. Lett. A 382, 1427 (2018).

    Article  CAS  Google Scholar 

  9. J. Kusuma, R.G. Balakrishna, S. Patil, M.S. Jyothi, H.R. Chandan, and R. Shwetharani, Sol. Energy Mater. Sol. Cells 183, 211 (2018).

    Article  CAS  Google Scholar 

  10. Y. Zhu, X. Li, Q. Cai, Z. Sun, G. Casillas, M. Jose-Yacaman, R. Verduzco, and J.M. Tour, J. Am. Chem. Soc. 134, 11774 (2012).

    Article  CAS  Google Scholar 

  11. A. Ramasubramaniam, Phys. Rev. B 81, 245413 (2010).

    Article  Google Scholar 

  12. J. Smotlacha and R. Pincak, Phys. Lett. A 382, 846 (2018).

    Article  CAS  Google Scholar 

  13. A. Mohammadi and S. Haji-Nasiri, Phys. Lett. A 382, 1040 (2018).

    Article  CAS  Google Scholar 

  14. O. Leenaert, B. Partoens, and F.M. Peeters, Phys. Rev. B 77, 125416 (2008).

    Article  Google Scholar 

  15. W. Wang and G. Zhao, Solid State Commun. 166, 6 (2013).

    Article  CAS  Google Scholar 

  16. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Mater. 21, 395502 (2009).

    Article  Google Scholar 

  17. S.S. Yu, W.T. Zheng, Q.B. Wen, and Q. Jiang, Carbon 46, 537 (2008).

    Article  CAS  Google Scholar 

  18. J.Y. Dai and J.M. Yuan, J. Phys. Condens. Mat. 22, 225501 (2010).

    Article  Google Scholar 

  19. K. Nakada and M. Fujita, Phys. Rev. B 54, 17954 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Inner Mongolia (No. 2016BS0107), the National Natural Science Foundation of China (no. 11464034) and a scientific research project of Inner Mongolia University for Nationalities (No. NMDGP1718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhao, C. & Li, P. Tuning the Electronic Properties of Graphene Oxide Nanoribbons Through Different Oxygen Doping Configurations. J. Electron. Mater. 47, 7093–7098 (2018). https://doi.org/10.1007/s11664-018-6638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6638-2

Keywords

Navigation