Advertisement

Journal of Electronic Materials

, Volume 48, Issue 3, pp 1429–1435 | Cite as

The Effect of Core–Shell Structure on Microwave Absorption Properties of Graphite-Coated Magnetic Nanocapsules

  • Yang Feng
  • Da LiEmail author
  • Yu Bai
  • An Hua
  • Desheng Pan
  • Yong Li
  • Yu Wang
  • Jun He
  • Zhenhua Wang
  • Yajing Zhang
  • Wei Liu
  • Zhidong Zhang
5th International Conference of Asian Union of Magnetics Societies
  • 27 Downloads
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)

Abstract

Interface polarization is one important factor in producing a good electromagnetic impedance match and enhancing the microwave-absorption properties of core/shell nanocomposites. However, the effect of the core–shell nanocapsules having insulating shells, and the polarization effect at interfaces of graphite-coated magnetic metallic nanoparticles, on the microwave absorption properties, are not clear. In this work, the microwave-absorption properties of magnetic nanocapsules with α-Fe/γ-Fe(C)/Fe3C as cores and graphite as shells have been investigated in the frequency range 2–18 GHz. Partial magnetic cores were removed by a ∼ 19 wt.% HCl solution from the as-prepared nanocapsules (A-nanocapsules), but the carbon shells were kept constant. Transmission electron microscopy confirms that hollow carbon nanocages are almost the same as the as-prepared shells, except for slight change in shape due to removing the cores. As a result, the complex permeability drops slightly, while the complex permittivity has an obvious increase, which can be ascribed to percolation effects due to the hollow carbon nanocages, rather than the interface polarization originating from the core/shell interfaces and interfaces between the core components of α-Fe, γ-Fe(C) and Fe3C nanocrystals. The optimal reflection loss (RL) value of the A-nanocapsules reaches − 27.6 dB at 16.2 GHz for a thickness of 2 mm. This study clarifies that the interface polarization effect in the A-nanocapsules is negligible in enhancing the complex permittivity and the synergetic effect of the magnetic loss of cores, and the dielectric loss of graphite shells is the dominant mechanism in attenuating microwaves.

Keywords

Microwave absorption mechanism impedance matching interface effect core/shell structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work has been supported by the National Natural Science Foundation of China under Grant Nos. 51171185, 51331006, 51371055, 51301114, and the National Basic Research Program (Nos. 2012CB933103 and 2017YFA0206302) of China, Ministry of Science and Technology of China.

References

  1. 1.
    B. Sirav and N. Seyhan, Electromagn. Biol. Med. 215, 28 (2009).Google Scholar
  2. 2.
    M. Parazzini, S. Bell, G. Thuroczy, F. Molnar, G. Tognola, M.E. Lutman, and P. Ravazzani, Hear. Res. 68, 208 (2005).Google Scholar
  3. 3.
    A. Balmori, Toxicol. Environ. Chem. 287, 88 (2006).Google Scholar
  4. 4.
    L.W. Jiang, Z.H. Wang, D. Li, D.Y. Geng, Y. Wang, J. An, J. He, W. Liu, and Z.D. Zhang, RSC Adv. 40384, 5 (2015).Google Scholar
  5. 5.
    Z. Han, D. Li, X.G. Liu, D.Y. Geng, J. Li, and Z.D. Zhang, J. Phys. D Appl. Phys. 055008, 42 (2009).Google Scholar
  6. 6.
    J.J. Jiang, H. Wang, H.H. Guo, T. Yang, W.S. Tang, D. Li, S. Ma, D.Y. Geng, W. Liu, and Z.D. Zhang, Nanoscale Res. Lett. 1, 7 (2012).Google Scholar
  7. 7.
    J.J. Jiang, D. Li, D.Y. Geng, J. An, J. He, W. Liu, and Z.D. Zhang, Nanoscale 3967, 6 (2014).Google Scholar
  8. 8.
    D. Min, W. Zhou, Y. Qing, F. Luo, and D. Zhu, J. Electron. Mater. 4903, 46 (2017).Google Scholar
  9. 9.
    X.F. Zhang, X.L. Dong, H. Huang, B. Lv, J.P. Lei, and C.J. Choi, J. Phys. D Appl. Phys. 5383, 40 (2007).Google Scholar
  10. 10.
    X. Zhao, Z. Zhang, L. Wang, K. Xi, Q. Cao, D. Wang, Y. Yang, and Y. Du, Sci. Rep. 3421, 3 (2013).Google Scholar
  11. 11.
    Z. Han, D. Li, H. Wang, X.G. Liu, J. Li, D.Y. Geng, and Z.D. Zhang, Appl. Phys. Lett. 023114, 95 (2009).Google Scholar
  12. 12.
    X.F. Zhang, X.L. Dong, H. Huang, B. Lv, X.G. Zhu, J.P. Lei, S. Ma, W. Liu, and Z.D. Zhang, Mater. Sci. Eng., A 211, 454 (2007).Google Scholar
  13. 13.
    J.J. Jiang, X.J. Li, Z. Han, D. Li, Z.H. Wang, D.Y. Geng, S. Ma, W. Liu, and Z.D. Zhang, J. Appl. Phys. 17A514, 115 (2014).Google Scholar
  14. 14.
    H. Wang, H.H. Guo, Y.Y. Dai, D.Y. Geng, Z. Han, D. Li, T. Yang, S. Ma, W. Liu, and Z.D. Zhang, Appl. Phys. Lett. 083116, 101 (2012).Google Scholar
  15. 15.
    J. Zhang, P. Wang, Y. Chen, G. Wang, D. Wang, L. Qiao, T. Wang, and F. Li, J. Electron. Mater. 4703, 47 (2018).Google Scholar
  16. 16.
    H. Wang, Y.Y. Dai, W.J. Gong, D.Y. Geng, S. Ma, D. Li, W. Liu, and Z.D. Zhang, Appl. Phys. Lett. 223113, 102 (2013).Google Scholar
  17. 17.
    D. Li, C.J. Choi, Z. Han, X.G. Liu, W.J. Hu, J. Li, and Z.D. Zhang, J. Magn. Magn. Mater. 4081, 321 (2009).Google Scholar
  18. 18.
    Y. Feng, D. Li, L.W. Jiang, Z.M. Dai, Y. Wang, J. An, W.J. Ren, J. He, Z.H. Wang, W. Liu, and Z.D. Zhang, J. Alloys Compd. 1224, 694 (2017).Google Scholar
  19. 19.
    D. Li, Y. Feng, D.S. Pan, L.W. Jiang, Z.M. Dai, S.J. Li, Y. Wang, J. He, W. Liu, and Z.D. Zhang, RSC Adv. 73020, 6 (2016).Google Scholar
  20. 20.
    X.G. Liu, D.Y. Geng, and Z.D. Zhang, Appl. Phys. Lett. 243110, 92 (2008).Google Scholar
  21. 21.
    X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, and Z.D. Zhang, Appl. Phys. Lett. 173117, 92 (2008).Google Scholar
  22. 22.
    L.W. Jiang, Z.H. Wang, D.Y. Geng, Y.M. Lin, Y. Wang, J. An, J. He, D. Li, W. Liu, and Z.D. Zhang, Carbon 910, 95 (2015).Google Scholar
  23. 23.
    D. Li, Z. Han, B. Wu, D.Y. Geng, and Z.D. Zhang, J. Phys. D Appl. Phys. 115005, 41 (2008).Google Scholar
  24. 24.
    D.S. Knight and W.B. White, J. Mater. Res. 385, 4 (1989).Google Scholar
  25. 25.
    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, and J.N. Coleman, Nat. Nanotechnol. 563, 3 (2008).Google Scholar
  26. 26.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 187401, 97 (2006).Google Scholar
  27. 27.
    D.R. Lenski and M.S. Fuhrer, J. Appl. Phys. 013720, 110 (2011).Google Scholar
  28. 28.
    A.C. Ferrari and J. Robertson, Phys. Rev. B 14095, 61 (2000).Google Scholar
  29. 29.
    C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj, Angew. Chem. Int. Ed. 7752, 48 (2009).Google Scholar
  30. 30.
    Z.D. Zhang, J.L. Yu, J.G. Zheng, I. Skorvanek, J. Kovac, X.L. Dong, Z.J. Li, S.R. Jin, H.C. Yang, Z.J. Guo, W. Liu, and X.G. Zhao, Phys. Rev. B 024404, 64 (2001).Google Scholar
  31. 31.
    S. Ramo, J.R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 2nd ed. (New York: Wiley, 1984), p. 181.Google Scholar
  32. 32.
    J.J. Jiang, D. Li, S.J. Li, Z.H. Wang, Y. Wang, J. He, W. Liu, and Z.D. Zhang, RSC Adv. 14584, 5 (2015).Google Scholar
  33. 33.
    Z. Han, D. Li, X.W. Wang, and Z.D. Zhang, J. Appl. Phys. 109, 07A301 (2011).CrossRefGoogle Scholar
  34. 34.
    P.C.P. Watts, D.R. Ponnampalam, W.K. Hsu, A. Barnes, and B. Chambers, Chem. Phys. Lett. 378, 609–614 (2003).CrossRefGoogle Scholar
  35. 35.
    Y.J. Li, C.Z. Zhu, and C.M. Wang, J. Phys. D Appl. Phys. 125303, 41 (2008).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Yang Feng
    • 1
  • Da Li
    • 1
    Email author
  • Yu Bai
    • 1
  • An Hua
    • 1
  • Desheng Pan
    • 1
  • Yong Li
    • 1
  • Yu Wang
    • 2
  • Jun He
    • 2
  • Zhenhua Wang
    • 1
  • Yajing Zhang
    • 3
  • Wei Liu
    • 1
  • Zhidong Zhang
    • 1
  1. 1.Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of SciencesShenyangChina
  2. 2.Division of Functional MaterialsCentral Iron and Steel Research InstituteBeijingChina
  3. 3.College of Chemical EngineeringShenyang University of Chemical TechnologyShenyangChina

Personalised recommendations