Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 53–57 | Cite as

Co-P Diffusion Barrier for p-Bi2Te3 Thermoelectric Material

  • Chun-Hsien Wang
  • Hsien-Chien Hsieh
  • Hsin-Yi Lee
  • Albert T. WuEmail author
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • 39 Downloads
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder

Abstract

(Bi0.25Te0.75)2Te3 (p-Bi2Te3) is thermoelectric material that can harvest waste heat into useful electric power. A severe reaction between p-Bi2Te3 and Sn-based solder decreases the reliability of thermoelectric modules. Sn/p-Bi2Te3 and Sn3.0Ag0.5Cu (SAC305)/p-Bi2Te3 with and without electroless Co-P at the interfaces were investigated in this study. Without a Co-P layer, brittle SnTe, Sn3Sb2, and Bi precipitates formed at the interface. A thin layer of SnTe after reflow results in growth of a layer-type Sn3Sb2 instead of a strip-like Sn3Sb2. The addition of a Co-P layer to both systems successfully inhibited the formation of brittle intermetallic compounds. Shear test results confirmed that the Co-P diffusion barrier also effectively increased the joint strength.

Keywords

Thermoelectric materials electroless Co-P diffusion barrier interfacial reaction shear strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  2. 2.
    A. Rodríguez, J.G. Vián, D. Astrain, and A. Martínez, Energy Convers. Manage. 50, 1236 (2009).CrossRefGoogle Scholar
  3. 3.
    Q.H. Zhang, X.Y. Huang, S.Q. Bai, X. Shi, C. Uher, and L.D. Chen, Adv. Eng. Mater. 18, 194 (2016).CrossRefGoogle Scholar
  4. 4.
    Y.W. Chang, C.C. Chang, M.T. Ke, and S.L. Chen, Appl. Therm. Eng. 29, 2731 (2009).CrossRefGoogle Scholar
  5. 5.
    G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat, Int. Mater. Rev. 48, 45 (2013).CrossRefGoogle Scholar
  6. 6.
    S.W. Chen and C.N. Chiu, Scr. Mater. 56, 97 (2007).CrossRefGoogle Scholar
  7. 7.
    T.Y. Lin, C.N. Liao, and A.T. Wu, J. Electron. Mater. 41, 153 (2011).CrossRefGoogle Scholar
  8. 8.
    L.C. Lo and A.T. Wu, J. Electron. Mater. 41, 3325 (2012).CrossRefGoogle Scholar
  9. 9.
    W.C. Lin, Y.S. Li, and A.T. Wu, J. Electron. Mater. 47, 148 (2017).CrossRefGoogle Scholar
  10. 10.
    P.Y. Chien, C.H. Yeh, H.H. Hsu, and A.T. Wu, J. Electron. Mater. 43, 284 (2013).CrossRefGoogle Scholar
  11. 11.
    C.Y. Ko and A.T. Wu, J. Electron. Mater. 41, 3320 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Wang, Y.X. Sun, J. Yang, B. Duan, L.H. Wu, W.Q. Zhang, and J.H. Yang, Energy Environ. Sci. 9, 3436 (2016).CrossRefGoogle Scholar
  13. 13.
    R.P. Gupta, O.D. Iyore, K. Xiong, J.B. White, K. Cho, H.N. Alshareef, and B.E. Gnade, Electrochem. Solid-State Lett. 12, H395 (2009).CrossRefGoogle Scholar
  14. 14.
    W.H. Chao, Y.R. Chen, S.C. Tseng, P.H. Yang, R.J. Wu, and J.Y. Hwang, Thin Solid Films 570, 172 (2014).CrossRefGoogle Scholar
  15. 15.
    H.C. Hsieh, C.H. Wang, W.C. Lin, S. Chakroborty, T.H. Lee, H.S. Chu, and A.T. Wu, J. Alloys Compd. 728, 1023 (2017).CrossRefGoogle Scholar
  16. 16.
    S.W. Chen, H.J. Wu, C.Y. Wu, C.F. Chang, and C.Y. Chen, J. Alloys Compd. 553, 106 (2013).CrossRefGoogle Scholar
  17. 17.
    S. Ye, J.D. Hwang, and C.M. Chen, Metall. Mater. Trans. A 46, 2372 (2015).CrossRefGoogle Scholar
  18. 18.
    P.L. Liu and J.K. Shang, J. Mater. Res. 16, 1651 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Chun-Hsien Wang
    • 1
  • Hsien-Chien Hsieh
    • 1
  • Hsin-Yi Lee
    • 2
  • Albert T. Wu
    • 1
    Email author
  1. 1.Department of Chemical and Materials EngineeringNational Central UniversityTaoyuan CityTaiwan
  2. 2.National Synchrotron Radiation Research CenterHsinchuTaiwan

Personalised recommendations