Skip to main content
Log in

High-Stability Platinum Nano-Electrocatalyst Synthesized by Cyclic Voltammetry for Oxygen Reduction Reaction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cyclic voltammetry as a simple electrochemical deposition method was developed in order to prepare a platinum nano-electrocatalyst for oxygen reduction reaction (ORR) in low-temperature fuel cell systems. The morphology of the prepared platinum was evaluated by scanning electron microscopy and energy dispersive x-ray analysis. The effects of platinum concentration in electrodeposition solution and scan numbers of cyclic voltammetry (scan rate: 50 m V s−1, between 1.489 and − 0.311 versus reversible hydrogen electrode) on the performance of prepared electrocatalysts for ORR were studied. The fabricated electrodes were evaluated by cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The results revealed that the optimum conditions for the preparation of electrocatalysts were 2E−3 M H2PtCl6 and 30 scan numbers. The optimized electrode showed high stability after 1200 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nie, Z.J. Zeng, B. He, Q. Li, X.W. Liu, and C.S. Zheng, Mater. Res. Innov. 18, 225 (2014).

    Article  Google Scholar 

  2. X. Yuan, H. Ge, X. Liu, X. Wang, W. Chen, W. Dong, and F. Huang, J. Alloys Compd. 688, 613 (2016).

    Article  CAS  Google Scholar 

  3. J. Xu, P. Gao, and T.S. Zhao, Energy Environ. Sci. 5, 5333 (2012).

    Article  CAS  Google Scholar 

  4. K. Shimizu, L. Sepunaru, and R.G. Compton, Chem. Sci. 7, 3364 (2016).

    Article  CAS  Google Scholar 

  5. A. Khan, C.A. Gunawan, and Chuan Zhao, ACS Sustain. Chem. Eng. 5, 3698 (2017).

    Article  CAS  Google Scholar 

  6. B.-J. Su, K.-W. Wang, T.-C. Cheng, and C.-J. Tseng, Mater. Chem. Phys. 135, 395 (2012).

    Article  CAS  Google Scholar 

  7. J. Jin, H. Wu, S. Wang, Y. Ding, and S. Yin, J. Hydrogen Energy 42, 20579 (2017).

    Article  CAS  Google Scholar 

  8. S. Cai, Z. Meng, H. Tang, Y. Wang, and P. Tsiakaras, Appl. Catal. B: Environ. 217, 477 (2017).

    Article  CAS  Google Scholar 

  9. J.N. Tiwari, K. Nath, S. Kumar, R.N. Tiwari, K.C. Kemp, N.H. Le, D.H. Youn, J.S. Lee, and K.S. Kim, Nat Commun. 4, 2221 (2013).

    Article  Google Scholar 

  10. E.M. Miner, T. Fukushima, D. Sheberla, L. Sun, Y. Surendranath, and M. Dincă, Nat Commun. 7, 10942 (2016).

    Article  CAS  Google Scholar 

  11. Y. Nie, L. Li, and Z. Wei, Chem. Soc. Rev. 44, 2168 (2015).

    Article  CAS  Google Scholar 

  12. H-W Liang, X. Zhuang, S. Brüller, X. Feng, and K. Müllen, 5, 4973 (2014).

  13. M.K. Debe, Nature 486, 43 (2012).

    Article  CAS  Google Scholar 

  14. C. Sealy, Mater. Today 11, 65 (2008).

    Article  CAS  Google Scholar 

  15. J. Wu and H. Yang, Acc. Chem. Res. 46, 1848 (2013).

    Article  CAS  Google Scholar 

  16. R.F. Wang, K. Wang, H. Wang, Q. Wang, J. Key, V. Linko, and S. Ji, Int. J. Hydrogen Energy 38, 5783 (2013).

    Article  CAS  Google Scholar 

  17. D.-Y. Kim, S.-B. Han, Y.-W. Lee, and K.-W. Park, Mater. Chem. Phys. 137, 704 (2013).

    Article  CAS  Google Scholar 

  18. Y.-J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi, and H. Wang, Chem. Rev. 115, 3433 (2015).

    Article  CAS  Google Scholar 

  19. W. Zhao, Y. Yang, and H. Zhang, Electrochim. Acta 99, 273 (2013).

    Article  CAS  Google Scholar 

  20. A. Strong, C. Thornberry, S. Beattie, R. Chen, and S.R. Coles, Fuel Cell Sci. Technol. 12, 064001 (2015).

    Article  Google Scholar 

  21. Z.D. Wei, S.H. Chan, L.L. Li, H.F. Cai, Z.T. Xia, and C.X. Sun, Electrochim. Acta 50, 2279 (2005).

    Article  CAS  Google Scholar 

  22. M.M.E. Duarte, A.S. Pilla, J.M. Sieben, and C.E. Mayer, Electrochem. Commun. 8, 159 (2006).

    Article  CAS  Google Scholar 

  23. N. Arjona, S. Rivas, L. Álvarez-Contreras, M. Guerra-BalcÁzar, J. Ledesma-García, E. Kjeangd, and L.G. Arriagae, N. J. Chem. 41, 1854 (2017).

    Article  CAS  Google Scholar 

  24. A. Kloke, C. Kohler, R. Gerwig, R. Zengerle, and S. Kerzenmacher, Adv. Mater. 24, 2921 (2012).

    Article  Google Scholar 

  25. R. AbdullahMirzaie and F. Hamedi, Iranian J. Catal. 5, 275 (2015).

    Google Scholar 

  26. R. Devanathan, A. Venkatnathan, and M. Dupuis, J. Phys. Chem. B 111, 13006 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the support of the Fuel Cell Research laboratory of Shahid Rajaee Teacher Training University (Tehran, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasol Abdullah Mirzaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah Mirzaie, R., Anaraki Firooz, A. & Mohammadkhani Khori, N. High-Stability Platinum Nano-Electrocatalyst Synthesized by Cyclic Voltammetry for Oxygen Reduction Reaction. J. Electron. Mater. 47, 6995–7001 (2018). https://doi.org/10.1007/s11664-018-6626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6626-6

Keywords

Navigation