Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 44–52 | Cite as

Corrosion-Induced Mass Loss of Cu9Al4 at the Cu-Al Ball–Bond Interface: Explained Based on Full Immersion of Cu, Al, and Cu-Al Intermetallic Galvanic Couples

  • Yuelin Wu
  • Andre LeeEmail author
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • 23 Downloads
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder

Abstract

The disappearance of Cu9Al4 has been observed at the failed Cu-Al ball–bond interface in the standard humidity reliability test. Galvanic corrosion has been considered as the cause of the bond failure, yet no convincing argument has been provided to explain the preferential attack on Cu9Al4. Due to encapsulation, corrosion should proceed with the thin-layer electrolyte condition. The high ohmic resistance may constrain the galvanic corrosion between adjacent entities only. Thus, in this study, the galvanic corrosion between Cu and Cu9Al4, Cu9Al4 and CuAl2, and CuAl2 and Al were investigated using the zero-resistance ammetry. The results showed that the galvanic corrosion rate was the highest for the Cu9Al4-CuAl2 couple as compared with the other two galvanic couples. Also, the observed residual alumina between Cu9Al4 and CuAl2 and the associated internal stress build-up during the CuAl2-to-Cu9Al4 transition contributed to a higher crack propagation rate. Therefore, the failure first occurs at this interface. This failure then leads to a separation of Cu and Cu9Al4 from CuAl2 and Al. For the Cu-Cu9Al4 couple, Cu9Al4, the anode should corrode significantly faster due to the strong galvanic effect imposed by a larger surface area of Cu. In contrast, for the CuAl2-Al couple, the anodic corrosion rate of Al is slow as the galvanic effect imposed by the CuAl2 cathode is weak due to the small cathode surface area. As a result, Cu9Al4 disappeared from the failed ball–bond interface.

Keywords

Wire bonding reliability Cu9Al4 intermetallic galvanic corrosion encapsulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was supported by the Semiconductor Research Corporation (Grant Number 2012-KJ-2285).

References

  1. 1.
    P.S. Chauhan, A. Choubey, Z.W. Zhong, and M.G. Pecht, Copper Wire Bonding (New York: Springer, 2014), pp. 1–9.CrossRefGoogle Scholar
  2. 2.
    S.H. Kim, J.W. Park, S.J. Hong, and J.T. Moon, in proceedings of the 2010 12th Electronic Components and Technology Conference (ECTC), Singapore (2010).  https://doi.org/10.1109/eptc.2010.5702699
  3. 3.
    Y.H. Lu, Y.W. Wang, B.K. Appelt, Y.S. Lai, and C. R. Kao, in proceedings of the 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL (2011).  https://doi.org/10.1109/ectc.2011.5898706
  4. 4.
    T. Boettcher, M. Rother, S. Liedtke, M. Ullrich, M. Bollmann, A. Pinkernelle, D. Gruber, H. Funke, M. Kaiser, K. Lee, M. Li, K. Leung, T. Li, M. L. Farrugia, and O. Halloran, in proceedings of the 2010 12th Electronic Components and Technology Conference (ECTC), Singapore (2010).  https://doi.org/10.1109/eptc.2010.5702706
  5. 5.
    P. Su, H. Seki, C. Ping, S. Zenbutsu, S. Itoh, L. Huang, N. Lia, B. Liu, C. Cherr, W. Tai, and A. Tseng, in proceedings of the 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL (2011).  https://doi.org/10.1109/ectc.2011.5898539
  6. 6.
    D. Liu, H. Chen, J. Wu, and E. Then, in proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV (2016).  https://doi.org/10.1109/ectc.2016.271
  7. 7.
    Y. Wu, K.N. Subramanian, S.C. Barton, and A. Lee, Microelectron. Reliab. 78, 355 (2017).CrossRefGoogle Scholar
  8. 8.
    A.B.Y. Lim, W.J. Neo, O. Yauw, B. Chylak, C.L. Gan, and Z. Chen, Microelectron. Reliab. 56, 155 (2016).CrossRefGoogle Scholar
  9. 9.
    L. Lantz, S. Hwang, and M. Pecht, Microelectron. Reliab. 42, 1163 (2002).CrossRefGoogle Scholar
  10. 10.
    R.B. Comizzoli, R.P. Frankenthal, K.J. Hanson, K. Konstadinidis, R.L. Opila, J. Sapjeta, J.D. Sinclair, K.M. Takahashi, A.L. Frank, and A.O. Ibidunni, Mater. Sci. Eng. A 198, 153 (1995).CrossRefGoogle Scholar
  11. 11.
    J.W. Oldfield, ASTM Int., West Conshohocken, PA (1988).  https://doi.org/10.1520/STP26188S
  12. 12.
    G.L. Song, Corros. Sci. 52, 455 (2010).CrossRefGoogle Scholar
  13. 13.
    ASTM G5-14, ASTM Int., West Conshohocken, PA (2014).  https://doi.org/10.1520/g0005-14
  14. 14.
    ASTM G3-14, ASTM Int., West Conshohocken, PA (2014).  https://doi.org/10.1520/g0003-14
  15. 15.
    X.L. Zhang, Z.H. Jiang, Z.P. Yao, Y. Song, and Z.D. Wu, Corros. Sci. 51, 581 (2009).CrossRefGoogle Scholar
  16. 16.
    F.G. Lindsay and R.J. Taylor, J. Eletroanal. Chem. 108, 293 (1980).CrossRefGoogle Scholar
  17. 17.
    G.S. Frankel, J. ASTM Int. 5, 1 (2008).CrossRefGoogle Scholar
  18. 18.
    ASTM G71-81, ASTM Int., West Conshohocken, PA (2014).  https://doi.org/10.1520/g0071
  19. 19.
    G. Kear, B.D. Barker, and F.C. Walsh, Corros. Sci. 46, 109 (2004).CrossRefGoogle Scholar
  20. 20.
    T. Hurlen, H. Lian, O.S. Ødegard, and T. Valand, Electrochim. Acta 29, 579 (1984).CrossRefGoogle Scholar
  21. 21.
    R.T. Foley and T.H. Nguyen, J. Electrochem. Soc. 129, 464 (1982).CrossRefGoogle Scholar
  22. 22.
    Z.S. Smialowska, Corros. Sci. 41, 1743 (1999).CrossRefGoogle Scholar
  23. 23.
    B. Mazurkiewicz and A. Piotrowski, Corros. Sci. 23, 697 (1983).CrossRefGoogle Scholar
  24. 24.
    N. Birbilis and R.G. Buchheit, J. Electrochem. Soc. 155, 117 (2008).CrossRefGoogle Scholar
  25. 25.
    J. Osenbach, B.Q. Wang, S. Emerich, J. DeLucca, and D. Meng, in proceedings of the 2013 IEEE 63rd Electronic Components and Technology Conference, Las Vegas, NV (2013).  https://doi.org/10.1109/ectc.2013.6575782
  26. 26.
    ASTM G82-98, ASTM Int., West Conshohocken, PA (1998).  https://doi.org/10.1520/g0082-98
  27. 27.
    ASTM G102-89, ASTM Int., West Conshohocken, PA (2015).  https://doi.org/10.1520/g0102-89r15e01
  28. 28.
    H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, and V.L. Acoff, Acta Mater. 59, 5661 (2011).CrossRefGoogle Scholar
  29. 29.
    H.G. Kim, S.M. Kim, J. Young Lee, M.R. Choi, S.H. Choe, K.H. Kim, J.S. Ryu, S. Kim, S.Z. Han, W.Y. Kim, and S.H. Lim, Acta Mater. 64, 356 (2014).  https://doi.org/10.1016/j.actamat.2013.10.049.CrossRefGoogle Scholar
  30. 30.
    T.K. Lee, C.D. Breach, W.L. Chong, and C.S. Goh, in proceedings of the 13th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP) (2012).  https://doi.org/10.1109/icept-hdp.2012.6474610

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations