Advertisement

Journal of Electronic Materials

, Volume 48, Issue 1, pp 32–43 | Cite as

Solid-State Diffusion of Bi in Sn: Effects of β-Sn Grain Orientation

  • André M. DelhaiseEmail author
  • Zhangqi Chen
  • Doug D. Perovic
TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
Part of the following topical collections:
  1. TMS2018 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder

Abstract

Bismuth (Bi) is an alloying element being considered for inclusion in lead-free solder alloys to improve microstructure, properties, and reliability. It has been determined that aging a Bi-bearing alloy will preserve its strength, whereas the strength of SAC alloys is degraded. Examination of microstructure reveals that, over time, homogenization of Bi in the tin (Sn) matrix via solid-state diffusion occurs, which leads to stabilization of mechanical properties. In this study, the effect of Sn grain orientation on the diffusivity of Bi was analyzed. Sn was solidified slowly to produce coarse grains typical of grain morphologies in solder joints. Bi was subsequently sputtered onto the Sn, and samples underwent annealing at 125°C for 24 h. Electron probe microanalysis (EPMA) was utilized to collect compositional data, and diffusivities were extracted for several grain orientations. It was determined that the diffusivity of Bi in Sn has a low anisotropy ratio, with a difference in diffusivity of around an order of magnitude between Sn samples oriented with the concentration gradient perpendicular to the ‘c’ axis and those oriented parallel to the ‘c’ axis. As a result, low angle grain boundaries in the Sn samples can have a profound effect on the diffusivity and confound the orientation relationship.

Keywords

Diffusion aging bismuth orientation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ma, J. Suhling, Y. Zhang, P. Lall, and M.J. Bozack, in Electronic Components and Technology Conference Proceedings (2007) pp. 653–658.Google Scholar
  2. 2.
    M. Hasnine, M. Mustafa, J.C. Suhling, B.C. Prorok, M.J. Bozack, and P. Lall, in 2013 Electronic Components and Technology Conference Proceedings (2013) pp. 168–178.Google Scholar
  3. 3.
    P. Snugovsky, S. Bagheri, M. Romansky, D. Perovic, L. Snugovsky, and J. Rutter, J. Electron. Mater. 25, 2 (2012).Google Scholar
  4. 4.
    David Witkin, in APEX Expo Proceedings (2013), pp. 540–560.Google Scholar
  5. 5.
    J. Juarez, P. Snugovsky, E. Kosiba, Z. Bagheri, S. Subramaniam, M. Robinson, J. Heebink, J. Kennedy, and M. Romansky, J. Microelectron. Electron. Packag. 12, 1 (2015).CrossRefGoogle Scholar
  6. 6.
    P. Vianco and J.A. Rejent, J. Electron. Mater. 28, 10 (1999).Google Scholar
  7. 7.
    A. Delhaise, L. Snugovsky, D. Perovic, P. Snugovsky, and E. Kosiba, J. Surf. Mt. Technol. 27, 3 (2014).Google Scholar
  8. 8.
    A. Delhaise and D. Perovic, J. Electron. Mater. 47, 3 (2018).CrossRefGoogle Scholar
  9. 9.
    F. Sauer and V. Friese, VZ Elektrochem. 66, 353 (1962).Google Scholar
  10. 10.
    L.D. Hall, J. Chem. Phys. 21, 87 (1953).Google Scholar
  11. 11.
    A. Delhaise, P. Snugovsky, I. Matijevic, J. Kennedy, M. Romansky, D. Hillman, D. Adams, S. Meschter, J. Juarez, M. Kammer, I. Straznicky, L. Snugovsky, and D. Perovic, J. Surf. Mt. Technol. 31, 1 (2018).Google Scholar
  12. 12.
    K. Seshan, Handbook of Thin Film Deposition—Processes and Technologies, 2nd ed. (New York: Noyes Publications, 2002), pp. 14–28.Google Scholar
  13. 13.
    M.P. Seah, Thin Solid Films 81, 3 (1981).Google Scholar
  14. 14.
    T.-K. Lee, T. Bieler, C.-U. Kim, and H. Ma, Fundamentals of Lead-Free Solder Interconnect Technology: From Microstructures to Reliability, 1st ed. (New York: Springer, 2015), p. 77.Google Scholar
  15. 15.
    F.H. Huang and H.B. Huntington, Phys. Rev. B. 19, 4 (1974).Google Scholar
  16. 16.
    B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 8 (1967).CrossRefGoogle Scholar
  17. 17.
    D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 15 (1984).CrossRefGoogle Scholar
  18. 18.
    R. Coyle, R. Aspandiar, M. Osterman, C. Johnson, R. Popowich, R. Parker, and D. Hillman, in 2017 SMTA International Conference Proceedings (2017) pp. 72–83.Google Scholar
  19. 19.
    C. Soong, P. Woo, and D. Hoyle, Microsc. Today 20, 6 (2012).CrossRefGoogle Scholar
  20. 20.
    WinWULFF (Stereogram, Stereographic Projection, Wulff-net, Simulation Software) (JCrystal). http://jcrystal.com/products/winwulff/. Accessed 12 June 2017.
  21. 21.
    Q. Zhang and J. Zhao, Intermetallics 34, 132 (2013).CrossRefGoogle Scholar
  22. 22.
    L. Zhu, Q. Zhang, Z. Chen, C. Wei, G. Cai, L. Jiang, Z. Jin, and J. Zhao, J. Mater. Sci. 52, 6 (2016).Google Scholar
  23. 23.
    Q. Zhang, Z. Chen, W. Zhong, and J. Zhao, Scr. Mater. 128 (2017).Google Scholar
  24. 24.
    pyDiffusion, a Python library for diffusion simulation and data analysis (Zhangqi Chen). https://github.com/zhangqi-chen/pyDiffusion. Accessed 21 Feb 2018.
  25. 25.
    W. Seith, J. Elektrochem. 39, 538 (1933).Google Scholar
  26. 26.
    S. Belyakov and C. Gourlay, Thermochem. Acta. 654 (2017).Google Scholar
  27. 27.
    B.-J. Lee, C.-S. Oh, and J.-H. Shim, J. Electron. Mater. 25, 6 (1996).Google Scholar
  28. 28.
    J. Vizdal, M.H. Braga, A. Kroupa, K.W. Richter, D. Soares, L.F. Malheiros, and J. Ferreira, Comput. Coupling Phase Diagr. Thermochem. 31, 4 (2007).CrossRefGoogle Scholar
  29. 29.
    M.H. Braga, J. Vizdal, A. Kroupa, J. Ferreira, D. Soares, and L.F. Melheiros, Comput. Coupling Phase Diagr. Thermochem. 31, 4 (2007)Google Scholar
  30. 30.
    P. Shewmon, Diffusion in Solids, 2nd ed. (Warrendale: The Minerals, Metals & Materials Society, 1989), pp. 42–46.Google Scholar
  31. 31.
    H. Mehrer, Diffusion in Solids—Fundamentals, Methods, Materials, Diffusion-Controlled Processes, 1st ed. (New York: Springer, 2007), pp. 168–169.Google Scholar
  32. 32.
    H. Mehrer, Diffusion in Solids—Fundamentals, Methods, Materials, Diffusion-Controlled Processes, 1st ed. (New York: Springer, 2007), p. 98.Google Scholar
  33. 33.
    P. Shewmon, Diffusion in Solids, 2nd ed. (Warrendale: The Minerals, Metals & Materials Society, 1989), pp. 142–145.Google Scholar
  34. 34.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Oxford: Elsevier, 2004), pp. 293–303.Google Scholar
  35. 35.
    M.R. Spiegel, Schaum’s Outline of Theory and Problems of Vector Analysis and an Introduction to Tensor Analysis (New York: McGraw-Hill, 1959), p. 16.Google Scholar
  36. 36.
    D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (London: Chapman & Hall, 1992), pp. 263–279.CrossRefGoogle Scholar
  37. 37.
    D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (London: Chapman & Hall, 1992), pp. 98–102.CrossRefGoogle Scholar
  38. 38.
    S.-W. Chen, C.-C. Chen, W. Gierlotka, A.-R. Zi, P.-Y. Chen, and H.-J. Wu, J. Electron. Mater. 37, 7 (2008).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada
  2. 2.Department of Materials Science and EngineeringOhio State UniversityColumbusUSA

Personalised recommendations