Journal of Electronic Materials

, Volume 48, Issue 3, pp 1436–1440 | Cite as

Laser Ablation Synthesis, Structure, and Exchange Bias of Mn4C/MnO Powders

  • Lu-Lu Yao
  • Ping-Zhan SiEmail author
  • Hong-Liang Ge
  • Hui-Dong Qian
  • Chul-Jin Choi
5th International Conference of Asian Union of Magnetics Societies
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)


Magnetic powders containing ferrimagnetic Mn4C phase and antiferromagnetic MnO phase were prepared from a Mn-C alloy by using the laser ablation method. The Mn-C alloys were composed of Mn4C and α-Mn(C) solid solution, which decomposed into Mn4C and Mn23C6 during laser ablation. The Mn clusters precipitated from the Mn(C) solid solution were spontaneously oxidized into MnO when exposed to air, forming an exchange bias system of Mn4C/MnO with ferrimagnetic/antiferromagnetic interfaces. The exchange bias field (22.3 mT at 5 K) of the Mn4C/MnO micro-powders, which show irregular shapes and a wide size distribution in the range of ~ 100 nm to ~ 20 μm, decreases with increasing temperature. Both the interface spins and the surface spins contribute to the exchange bias effect in these powders. The coercivity of the laser-ablated micro-powders reached up to ~ 150 mT at 5 K and ~ 40 mT at 400 K, respectively.


Mn4exchange bias laser ablation micro-powders 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 11074227, 51671177), and the Future Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (2016M3D1A1027835).


  1. 1.
    M. Isobe, Sci. Rep. Res. Inst. Tohuku Univ. A3, 468 (1951).Google Scholar
  2. 2.
    K. Kuo and L.E. Persson, J. Iron Steel Inst. 178, 39 (1954).Google Scholar
  3. 3.
    T.Y. Kosolapova, Carbides: Properties, Production, and Applications (New York: Plenum press, 1971), p. 168.Google Scholar
  4. 4.
  5. 5.
    R. Benz, J.F. Elliott, and J. Chipman, Metall. Trans. 4, 1449 (1973).
  6. 6.
    P. Karen, H. Fjellvag, A. Kjekshus, and A.F. Andresen, Acta Chem. Scand. 45, 549 (1991). Scholar
  7. 7.
    F. Tang, D. Bogdanovski, I. Bajenova, A. Khvan, R. Dronskowski, and B. Hallstedt, Calphad 60, 231 (2018). Scholar
  8. 8.
    P.Z. Si, H.D. Qian, H.L. Ge, J. Park, and C.J. Choi, Appl. Phys. Lett. 112, 192407 (2018). Scholar
  9. 9.
    W.H. Meiklejohn and C.P. Bean, Phys. Rev. 102, 1413 (1956). Scholar
  10. 10.
    J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, and M.D. Baró, Phys. Rep. 422, 65 (2005). Scholar
  11. 11.
    P.Z. Si, D. Li, C.J. Choi, Y.B. Li, D.Y. Geng, and Z.D. Zhang, Solid State Commun. 142, 723 (2007). Scholar
  12. 12.
    B. Williams, A.A. El-Gendy, and E.E. Carpenter, J. Magn. Magn. Mater. 444, 332 (2017). Scholar
  13. 13.
    M.H. Phan, J. Alonso, H. Khurshid, P. Lampen-Kelley, S. Chandra, K.S. Repa, Z. Nemati, R. Das, Ó. Iglesias, and H. Srikanth, Nanomaterials 6, 221 (2016). Scholar
  14. 14.
    H. Khurshid, M.H. Phan, P. Mukherjee, and H. Srikantha, Appl. Phys. Lett. 104, 072407 (2014). Scholar
  15. 15.
    P.Z. Si, X.L. Wang, X.F. Xiao, H.J. Chen, X.Y. Liu, L. Jiang, J.J. Liu, Z.W. Jiao, and H.L. Ge, J. Magn. 20, 211 (2015). Scholar
  16. 16.
    P.Z. Si, E. Bruck, Z.D. Zhang, O. Tegus, W.S. Zhang, K.H.J. Buschow, and J.C.P. Klaasse, Mater. Res. Bull. 40, 29 (2005). Scholar
  17. 17.
    Y. Tagawa and K. Motizuki, J. Phys. Condens. Matter. 3, 1753 (1991). Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChina Jiliang UniversityHangzhouChina
  2. 2.Powder and Ceramic DivisionKorea Institute of Materials ScienceChangwonRepublic of Korea

Personalised recommendations