Journal of Electronic Materials

, Volume 48, Issue 3, pp 1441–1445 | Cite as

Effect of Coulomb Interactions on the Electronic and Magnetic Properties of Two-Dimensional CrSiTe3 and CrGeTe3 Materials

  • Sungmo Kang
  • Seungjin Kang
  • Jaejun YuEmail author
5th International Conference of Asian Union of Magnetics Societies
Part of the following topical collections:
  1. 5th International Conference of Asian Union of Magnetics Societies (IcAUMS)


We investigate the electronic and magnetic structures of two-dimensional transition metal tri-chalcogenide CrSiTe3 and CrGeTe3 materials by carrying out first-principles calculations. The single-layer CrSiTe3 and CrGeTe3 are found to be a ferromagnetic insulator, where the presence of the strong dpσ-hybridization of Cr eg-Te p plays a crucial role for the ferromagnetic coupling between Cr ions. We observe that the bandgaps and the interlayer magnetic order vary notably depending on the magnitude of on-site Coulomb interaction U for Cr d electrons. The bandgaps are formed between the Cr eg conduction bands and the Te p valence bands for both CrSiTe3 and CrGeTe3 in the majority-spin channel. The dominant Te p antibonding character in the valence bands just below the Fermi level is related to the decrease of the bandgap for the increase of U. We elucidate the energy band diagram, which may serve to understand the electronic and magnetic properties of the ABX3-type transition metal tri-chalcogenides in general.


Transition metal tri-chalcogenide electronic structure  two-dimensional ferromagnetism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge A. Fujimori and Kee Hoon Kim for valuable discussions. This work was supported by the National Research Foundation of Korea (NRF) (No. 2017R1A2B4007100). JY gratefully acknowledges the support and hospitality provided by the Max Planck Institute for the Physics of Complex Systems, where this work was completed during his visit to the institute.


  1. 1.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Nat. Nanotechnol. 7, 699 (2012).CrossRefGoogle Scholar
  2. 2.
    M.A. McGuire, H. Dixit, V.R. Cooper, and B.C. Sales, Chem. Mater. 27, 612 (2015).CrossRefGoogle Scholar
  3. 3.
    B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, K.L. Seyler, D. Zhong, E. Schmidgall, M.A. McGuire, D.H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Nature 546, 270 (2017).CrossRefGoogle Scholar
  4. 4.
    N. Sivadas, M.W. Daniels, R.H. Swendsen, S. Okamoto, and D. Xiao, Phys. Rev. B 91, 235425 (2015).CrossRefGoogle Scholar
  5. 5.
    A. Wiedenmann, J. Rossat-Mignod, A. Louisy, R. Brec, and J. Rouxel, Solid State Commun. 40, 1067 (1981).CrossRefGoogle Scholar
  6. 6.
    R. Brec, Solid State Ion. 22, 3 (1986).CrossRefGoogle Scholar
  7. 7.
    B. Siberchicot, S. Jobic, V. Carteaux, P. Gressier, and G. Ouvrard, J. Phys. Chem. 100, 5863 (1996).CrossRefGoogle Scholar
  8. 8.
    A.R. Wildes, B. Roessli, B. Lebech, and K.W. Godfrey, J. Phys. Condens. Matter 10, 6417 (1998).CrossRefGoogle Scholar
  9. 9.
    P.A. Joy and S. Vasudevan, Phys. Rev. B 46, 5425 (1992).CrossRefGoogle Scholar
  10. 10.
    Y. Takano, N. Arai, A. Arai, Y. Takahashi, K. Takase, and K. Sekizawa, J. Magn. Magn. Mater. 272, E593 (2004).CrossRefGoogle Scholar
  11. 11.
    M.W. Lin, H.L. Zhuang, J. Yan, T.Z. Ward, A.A. Puretzky, C.M. Rouleau, Z. Gai, L. Liang, V. Meunier, B.G. Sumpter, P. Ganesh, P.R.C. Kent, D.B. Geohegan, D. Mandrus, and K. Xiao, J. Mater. Chem. C 4, 315 (2016).CrossRefGoogle Scholar
  12. 12.
    T.J. Williams, A.A. Aczel, M.D. Lumsden, S.E. Nagler, M.B. Stone, J.Q. Yan, and D. Mandrus, Phys. Rev. B 92, 144404 (2015).CrossRefGoogle Scholar
  13. 13.
    X. Chen, J. Qi, and D. Shi, Phys. Lett. A 379, 60 (2015).CrossRefGoogle Scholar
  14. 14.
    L. Casto, A. Clune, M. Yokosuk, J. Musfeldt, T. Williams, H. Zhuang, M.W. Lin, K. Xiao, R. Hennig, B. Sales, J.Q. Yan, and D. Mandrus, APL Mater. 3, 041515 (2015).CrossRefGoogle Scholar
  15. 15.
    The OpenMX Project.
  16. 16.
    T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005).CrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  18. 18.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57, 1505 (1998).CrossRefGoogle Scholar
  19. 19.
    M.J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 73, 045110 (2006).CrossRefGoogle Scholar
  20. 20.
    A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006).CrossRefGoogle Scholar
  21. 21.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  22. 22.
    X. Li and J. Yang, J. Mater. Chem. C 2, 7071 (2014).CrossRefGoogle Scholar
  23. 23.
    H.L. Zhuang, Y. Xie, P.R.C. Kent, and P. Ganesh, Phys. Rev. B 92, 035407 (2015).CrossRefGoogle Scholar
  24. 24.
    C. Zener, Phys. Rev. 81, 440 (1951).CrossRefGoogle Scholar
  25. 25.
    J. Kanamori and K. Terakura, J. Phys. Soc. Jpn. 70, 1433 (2001).CrossRefGoogle Scholar
  26. 26.
    L. Wang, T. Maxisch, and G. Ceder, Phys. Rev. B 73, 195107 (2006).CrossRefGoogle Scholar
  27. 27.
    H. Ji, R.A. Stokes, L.D. Alegria, E.C. Blomberg, M.A. Tanatar, A. Reijnders, L.M. Schoop, T. Liang, R. Prozorov, K.S. Burch, N.P. Ong, J.R. Petta, and R.J. Cava, J. Appl. Phys. 114, 114907 (2013).CrossRefGoogle Scholar
  28. 28.
    A. Fujimori, private communication Google Scholar
  29. 29.
    G.T. Lin, H.L. Zhuang, X. Luo, B.J. Liu, F.C. Chen, J. Yan, Y. Sun, J. Zhou, W.J. Lu, P. Tong, Z.G. Sheng, Z. Qu, W.H. Song, X.B. Zhu, and Y.P. Sun, Phys. Rev. B 95, 245212 (2017).CrossRefGoogle Scholar
  30. 30.
    M. Marsman, J. Paier, A. Stroppa, and G. Kresse, J. Phys. Condens. Matter 20, 064201 (2008).CrossRefGoogle Scholar
  31. 31.
    W. Li, C.F. Walther, A. Kuc, and T. Heine, J. Chem. Theory Comput. 9, 2950 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, Center for Theoretical PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations