Journal of Electronic Materials

, Volume 47, Issue 11, pp 6540–6550 | Cite as

Preparation, Photoelectrochemical Properties and Biosensor Applications of Oriented 2-D ZnIn2S4 Nanosheet Arrays for Detecting Glutathione (GSH)

  • Linmeng Wang
  • Meng Wei
  • Xiuquan GuEmail author
  • Yulong Zhao
  • Yinghuai QiangEmail author


In this study, two-dimensional (2-D) ZnIn2S4 nanosheet arrays (NSAs) have been prepared on the arbitrary substrates directly through a facile one-pot hydrothermal route. The effect of synthesis time, synthesis temperature and substrate type were investigated on the surface morphologies of the obtained ZnIn2S4 membranes. It was found that the optimal growth conditions were 200°C, 2 h and fluorine doped tin oxide (FTO) used as the substrate. Besides, the influence of growth time on the photoelectrochemical (PEC) properties of ZnIn2S4 was investigated. It was demonstrated that the best PEC performance was achieved in the 2 h sample (200°C, FTO substrates), which displayed a photocurrent density of ∼ 1.0 mA/cm2 versus reversible hydrogen electrode under a simulated solar irradiation (AM1.5G, with an intensity of 100 mA/cm2). The Mott–Schottky (M–S) plots indicated that the 2 h sample owned the highest donor density (ND) and the most positive flat-band potential (VFB), suggesting that the enhanced PEC performance might be resulting from a better n-type conductivity of the ZnIn2S4 electrode. Further, the PEC biosensors were fabricated by using a ZnIn2S4 photoanode for detection of the glutathione (GSH), leading to an excellent detect limit of 1500 mA cm−2 M−1 and sensitivity of 33 nM.


ZnIn2S4 two-dimensional photoelectrochemical array biosensor photoanode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is financially supported by the Fundamental Research Funds for the Central Universities (2015XKZD01).

Supplementary material

11664_2018_6573_MOESM1_ESM.pdf (647 kb)
Supplementary material 1 (PDF 647 kb)


  1. 1.
    H. Fujishima and K. Honda, Nature 238, 37 (1972).CrossRefGoogle Scholar
  2. 2.
    S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z. Guo, and J. Tang, Energy Environ. Sci. 8, 731 (2015).CrossRefGoogle Scholar
  3. 3.
    K. Kalyanasundaram, Photochemistry 41, 182 (2013).CrossRefGoogle Scholar
  4. 4.
    C. Du, X. Yang, M.T. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping, and D. Wang, Angew. Chem. Int. Ed. 52, 12692 (2013).CrossRefGoogle Scholar
  5. 5.
    M. Sui, C. Han, Y. Wang, J. Li, and X. Gu, J. Mater. Sci.-Mater. Electron. 27, 4290 (2016).CrossRefGoogle Scholar
  6. 6.
    J. Su, L. Guo, N. Bao, and C.A. Grimes, Nano Lett. 11, 1928 (2011).CrossRefGoogle Scholar
  7. 7.
    Y. Zhao, J. Gong, X. Zhang, R. Kong, and F. Qu, Sensor. Actuat. B-Chem. 255, 1753 (2018).CrossRefGoogle Scholar
  8. 8.
    Y. Tang, P. Wang, J. Yun, R. Amal, and Y.H. Ng, J. Mater. Chem. A 3, 15876 (2015).CrossRefGoogle Scholar
  9. 9.
    J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, and H. Liu, Chem. Soc. Rev. 43, 6920 (2014).CrossRefGoogle Scholar
  10. 10.
    X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, and Y. Li, Nano Lett. 9, 2331 (2009).CrossRefGoogle Scholar
  11. 11.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).CrossRefGoogle Scholar
  12. 12.
    X.M. Zhang, M.Y. Lu, Y. Zhang, L.J. Chen, and Z.L. Wang, Adv. Mater. 21, 2767 (2009).CrossRefGoogle Scholar
  13. 13.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).CrossRefGoogle Scholar
  14. 14.
    M. Li, J. Su, and L. Guo, Int. J. Hydrog. Energy 33, 2891 (2008).CrossRefGoogle Scholar
  15. 15.
    S. Peng, P. Zhu, V. Thavasi, S.G. Mhaisalkar, and S. Ramakrishna, Nanoscale 3, 2068 (2011).CrossRefGoogle Scholar
  16. 16.
    G. Zhang, D. Chen, N. Li, Q. Xu, H. Li, J. He, and J. Lu, Appl. Catal. B-Environ. 232, 164 (2018).CrossRefGoogle Scholar
  17. 17.
    M. Sun, X. Zhao, Q. Zeng, T. Yan, P. Ji, T. Wu, D. Wei, and B. Du, Appl. Surf. Sci. 407, 326 (2016).Google Scholar
  18. 18.
    Y. Xia, Q. Li, K. Lv, and M. Li, Appl. Surf. Sci. 398, 81 (2017).CrossRefGoogle Scholar
  19. 19.
    L. Su, X. Ye, S. Meng, X. Fu, and S. Chen, Appl. Surf. Sci. 384, 161 (2016).CrossRefGoogle Scholar
  20. 20.
    Z. Guan, P. Wang, Q. Li, G. Li, and J. Yang, Dalton Trans. 47, 6800 (2018).CrossRefGoogle Scholar
  21. 21.
    Q. Li, C. Cui, H. Meng, and J. Yu, Chem-Asian J 9, 1766 (2014).CrossRefGoogle Scholar
  22. 22.
    B. Fan, Z. Chen, Q. Liu, Z. Zhang, and X. Fang, Appl. Surf. Sci. 370, 252 (2016).CrossRefGoogle Scholar
  23. 23.
    Q. Liu, H. Lu, Z. Shi, F. Wu, J. Guo, K. Deng, L. Li, and A.C.S. Appl, Mater. Interfaces 6, 17200 (2014).CrossRefGoogle Scholar
  24. 24.
    H. Jia, W. He, Y. Lei, X. Chen, Y. Xiang, S. Zhang, W.M. Lau, and Z. Zheng, RSC Adv. 3, 8909 (2013).CrossRefGoogle Scholar
  25. 25.
    J. Chen, F. Xin, X. Yin, T. Xiang, and Y. Wang, RSC Adv. 5, 3833 (2015).CrossRefGoogle Scholar
  26. 26.
    K. Zhao, X. Yan, Y. Gu, Z. Kang, Z. Bai, S. Cao, Y. Liu, X. Zhang, and Y. Zhang, Small 12, 245 (2016).CrossRefGoogle Scholar
  27. 27.
    Z. Kang, X.Q. Yan, Y. Wang, Y. Zhao, Z. Bai, Y.C. Liu, K. Zhao, S.Y. Cao, and Y. Zhang, Nano Res. 9, 344 (2016).CrossRefGoogle Scholar
  28. 28.
    A. van der Drift, Philips Res. Rep. 22, 267 (1967).Google Scholar
  29. 29.
    K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe, and H. Sugihara, J. Phys. Chem. B 110, 11352 (2006).CrossRefGoogle Scholar
  30. 30.
    M. Valant and D. Suvorov, J. Am. Ceram. Soc. 83, 2721 (2000).CrossRefGoogle Scholar
  31. 31.
    J.H. Kim, J.W. Jang, Y.H. Jo, F.F. Abdi, Y.H. Lee, R. van de Krol, and J.S. Lee, Nat. Commun. 7, 13380 (2016).CrossRefGoogle Scholar
  32. 32.
    S. Li, X. Gu, Y. Zhao, Y. Qiang, and S. Zhang, J. Mater. Sci.-Mater. Electron. 27, 8455 (2016).CrossRefGoogle Scholar
  33. 33.
    L.H. Zhu, J.Z. Jiang, and H.Q. Tang, Anal. Chim. Acta 816, 41 (2014).CrossRefGoogle Scholar
  34. 34.
    J.C. Ndamanisha, J. Bai, B. Qi, and L.P. Guo, Anal. Biochem. 386, 79 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations