Advertisement

Journal of Electronic Materials

, Volume 47, Issue 11, pp 6575–6582 | Cite as

Hydrothermal Synthesis of Porous Sugarcane Bagasse Carbon/MnO2 Nanocomposite for Supercapacitor Application

  • Shanxin Xiong
  • Xiangkai Zhang
  • Jia Chu
  • Xiaoqin Wang
  • Runlan Zhang
  • Ming Gong
  • Bohua Wu
Article
  • 98 Downloads

Abstract

In this article, we reported a biomass carbon/MnO2 nanocomposite electrode material prepared by a hydrothermal method. Sugarcane bagasse and KOH were the carbon source and activation agent, respectively. The obtained sugarcane bagasse carbon is rich in pore structure, so it can act as the host for MnO2. The biomass carbon/MnO2 nanocomposite electrode was prepared by a hydrothermal method. The morphologies of materials were observed by scanning electron microscopy. Raman spectra and x-ray diffraction were utilized to characterize the molecular and crystal structures of samples, respectively. The electrochemical and capacitive performances of materials were tested by electrochemical workstation. By calculation, the specific capacitance of sugarcane bagasse carbon, MnO2 and composite electrode are 280 F g−1, 163 F g−1 and 359 F g−1, respectively. Compared with pure sugarcane bagasse carbon and MnO2, the specific capacitance of the composite increases by 28% and 120%, respectively. After 2000 cycles of charge and discharge, the capacitance retention of the composite is 94%, which is higher than 91% of sugarcane bagasse carbon and 45% of MnO2.

Keywords

Sugarcane bagasse carbon MnO2 hydrothermal synthesis capacitance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Shaanxi Province, China (2018JM5027).

References

  1. 1.
    E. González and J.A. Goikolea, Barrena and R. Mysyk. Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRefGoogle Scholar
  2. 2.
    Y. Pan, Int. J. Hydrog. Energy 6, 43 (2018).Google Scholar
  3. 3.
    Y. Pan and W.M. Guan, J. Power Sources 325, 246 (2016).Google Scholar
  4. 4.
    Y. Pan and W.M. Guan, Int. J. Hydrog. Energy 26, 41 (2016).Google Scholar
  5. 5.
    Y. Pan and W.M. Guan, Inorg. Chem. (2018).  https://doi.org/10.1021/acs.inorgchem.8b00747.CrossRefGoogle Scholar
  6. 6.
    A. Borenstein, O. Hanna, A. Ran, S. Luski, T. Brousse, and D. Aurbach, J. Mater. Chem. A 5, 12653 (2017).CrossRefGoogle Scholar
  7. 7.
    A.G. Pandolfo and A.F. Hollenkamp, J. Power Sources 1, 11 (2006).CrossRefGoogle Scholar
  8. 8.
    A. Braun, M. Bärtsch, F. Geiger, B. Schnyder, R. Kötz, O. Haas, M. Carlen, T. Christen, C. Ohler, and P. Unterinahrer, MRS Proc. 575, 369 (1999).Google Scholar
  9. 9.
    V.V.N. Obreja, Phys. E 7, 2596 (2008).CrossRefGoogle Scholar
  10. 10.
    Y.L. Tai and H. Teng, Chem. Mater. 2, 338 (2004).CrossRefGoogle Scholar
  11. 11.
    H. Li, Y. Li, R. Wang, and R. Cao, J. Alloys Compd. 1–2, 100 (2009).CrossRefGoogle Scholar
  12. 12.
    L. Wei and G. Yushin, Carbon 14, 4830 (2011).CrossRefGoogle Scholar
  13. 13.
    X.Y. Xu, J.P. Gao, Q. Tian, X.G. Zhai, and Y. Liu, Appl. Surf. Sci. 411, 170 (2017).CrossRefGoogle Scholar
  14. 14.
    H.B. Su, P.L. Zhu, L.C. Zhang, F.R. Zhou, G. Li, T.X. Li, Q. Wang, R. Wang, and C.P. Wong, J. Electroanal. Chem. 786, 28 (2017).CrossRefGoogle Scholar
  15. 15.
    W.M. Qiao, S. Yoon, and I. Mochida, Energy Fuels 4, 1680 (2006).CrossRefGoogle Scholar
  16. 16.
    W. Sun, S.M. Lipka, C. Swartz, D. Williams, and F.Q. Yang, Carbon 103, 181 (2016).CrossRefGoogle Scholar
  17. 17.
    B.B. Chang, Y.Z. Guo, Y.C. Li, and B.C. Yang, RSC Adv. 88, 72019 (2015).CrossRefGoogle Scholar
  18. 18.
    C. Peng, X.B. Yan, R.T. Wang, J.W. Lang, Y.J. Ou, and Q.J. Xue, Electrochim. Acta 1, 401 (2013).CrossRefGoogle Scholar
  19. 19.
    T.Y. Kou, B. Yao, T.Y. Liu, and Y. Li, J. Mater. Chem. A 33, 17151 (2017).CrossRefGoogle Scholar
  20. 20.
    W. Du, X.N. Wang, X.Y. Ju, K. Xu, M.J. Gao, and X.T. Zhang, J. Electroanal. Chem. 802, 15 (2017).CrossRefGoogle Scholar
  21. 21.
    H.S. Yaddanapudi, K. Tian, S. Teng, and A. Tiwari, Sci. Rep. 6, 33659 (2016).CrossRefGoogle Scholar
  22. 22.
    O.A. Ajayi, D.H. Guitierrez, D. Peaslee, A. Cheng, T. Gao, C.W. Wong, and B. Chen, Nat. Nanotechnol. 41, 415203 (2015).CrossRefGoogle Scholar
  23. 23.
    C.Q. Dong, Y. Wang, J.L. Xu, G.H. Cheng, W.F. Yang, T.Y. Kou, Z.H. Zhang, and Y. Ding, J. Mater. Chem. A 43, 18229 (2014).CrossRefGoogle Scholar
  24. 24.
    J.G. Wang, F. Kang, and B. Wei, Prog. Mater Sci. 74, 51 (2015).CrossRefGoogle Scholar
  25. 25.
    H. Lee, S.H. Park, S.J. Kim, Y.K. Park, B.J. Kim, K.H. An, S.J. Ki, and S.C. Jung, Int. J. Hydrog. Energy 1, 754 (2015).CrossRefGoogle Scholar
  26. 26.
    S.B. Ma, K.Y. Ahn, E.S. Lee, K.H. Oh, and K.B. Kim, Carbon 2, 375 (2007).CrossRefGoogle Scholar
  27. 27.
    S.L. Chou, J.Z. Wang, S.Y. Chew, H.K. Liu, and S.X. Dou, Electrochem. Commun. 11, 1724 (2008).CrossRefGoogle Scholar
  28. 28.
    T.C. Chou, C.H. Huang, and R.A. Doong, Synth. Met. 8, 194 (2014).Google Scholar
  29. 29.
    M. Ramesh, H.S. Nagaraja, M.P. Rao, S. Anandan, and N.M. Huang, Mater. Lett. 172, 85 (2016).CrossRefGoogle Scholar
  30. 30.
    D. Kalpana, S.H. Cho, S.B. Lee, Y.S. Lee, R. Misra, and N.G. Renganathan, J. Power Sources 2, 587 (2009).CrossRefGoogle Scholar
  31. 31.
    K. Vijayalakshmi, S.D. Jereil, and K. Alagusundaram, Superlattices Microstruct. 85, 789 (2015).CrossRefGoogle Scholar
  32. 32.
    M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, and L. Kang, RSC Adv. 2, 5 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXi’an University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations