Journal of Electronic Materials

, Volume 47, Issue 11, pp 6518–6524 | Cite as

Modulated Pencil-Drawn U-Shaped Piezoresistive Graphite on Compound Fibers for Wind Sensing

  • Jianxiong ZhuEmail author
  • Weixing Song
  • Run Huang


The design, fabrication, analysis and measurement of the modulated pencil-drawn U-shaped piezoresistive graphite on paper compound fibers and its application for wind speed sensing are reported. We found that pencil drawing was a facile method for producing an ultrafine graphite film through the friction between the pencil leads and paper fibers. The pencil-drawn graphite was characterized by Raman spectroscopy and x-ray diffraction. The resistance of the patterned graphite sensor showed a decrease or an increase due to compression or tension bending, respectively, of the paper cantilever substrate. The wind impacting onto the flexible paper substrate with negative and positive speeds resulted in a bending compression or tension that was related to the resistance measured from the sensor. It was demonstrated that the resistance of a 10-mm -ide line of the U-shaped graphite on the paper substrate was 24 kΩ at ∼ 40° and 45 kΩ at ∼− 40°. Furthermore, we found that the graphite patterned on paper substrate with a small line width, such as 3 mm, showed good linearity for the relationship between the measured resistance and the wind speed.


Piezoresistive high-flexibility device paper-based graphite wind sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was funded by Nos. GRCK2016082914424352 and 20170719075917475 from the Shenzhen Science and Technology Innovation Committee. The authors declare that there was no conflict of interest with this publication.


  1. 1.
    A.V. Alaferdov, R. Savu, M.A. Canesqui, E. Bortolucci, E. Joanni, J. Peressinoto, and S.A. Moshkalev, Int. J. Metrol. Qual. Eng. 8, 5 (2017).CrossRefGoogle Scholar
  2. 2.
    N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, and G. Shvets, Nano Lett. 16, 3607 (2016).CrossRefGoogle Scholar
  3. 3.
    F.E. Galdino, J.P. Smith, S.I. Kwamou, D.K. Kampouris, J. Iniesta, G.C. Smith, and C.E. Banks, Anal. Chem. 87, 11666 (2015).CrossRefGoogle Scholar
  4. 4.
    Q. Liu, J. Chen, Y. Li, and G. Shi, ACS Nano 10, 7901 (2016).CrossRefGoogle Scholar
  5. 5.
    Z. Lou, S. Chen, L. Wang, K. Jiang, and G. Shen, Nano Energy 23, 7 (2016).CrossRefGoogle Scholar
  6. 6.
    W.P. Shih, L.C. Tsao, C.W. Lee, M.Y. Cheng, C. Chang, Y.J. Yang, and K.C. Fan, Sensors (Basel) 10, 3597 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Tadakaluru, W. Thongsuwan, and P. Singjai, Sensors (Basel) 14, 868 (2014).CrossRefGoogle Scholar
  8. 8.
    Q.X. Guo, Y. Mitsuishi, T. Tanaka, M. Nishio, and H. Ogawa, J. Korean Phys. Soc. 53, 2796 (2008).CrossRefGoogle Scholar
  9. 9.
    R. Ciriminna, N. Zhang, M.Q. Yang, F. Meneguzzo, Y.J. Xu, and M. Pagliaro, Chem Commun (Camb) 51, 7090 (2015).CrossRefGoogle Scholar
  10. 10.
    I.Y. Jeon, M. Choi, H.J. Choi, S.M. Jung, M.J. Kim, J.M. Seo, and J.B. Baek, Nat Commun. 6, 7123 (2015).CrossRefGoogle Scholar
  11. 11.
    S. Varghese, S. Varghese, S. Swaminathan, K. Singh, and V. Mittal, Electronics 4, 651 (2015).CrossRefGoogle Scholar
  12. 12.
    V. Blechta, M. Mergl, K. Drogowska, V. Valeš, and M. Kalbáč, Sens. Actuators B Chem. 226, 299 (2016).CrossRefGoogle Scholar
  13. 13.
    T. Dinh, H.P. Phan, D.V. Dao, P. Woodfield, A. Qamar, and N.T. Nguyen, J. Mater. Chem. C 3, 8776 (2015).CrossRefGoogle Scholar
  14. 14.
    C.W. Lin, Z. Zhao, J. Kim, and J. Huang, Sci Rep. 4, 3812 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Pan, M.J. Deen, and R. Ghosh, Anal. Chem. 87, 10734 (2015).CrossRefGoogle Scholar
  16. 16.
    H.P. Phan, T. Dinh, T.K. Nguyen, A. Vatani, A.R. Md Foisal, A. Qamar, and N.T. Nguyen, Appl. Phys. Lett. 110, 144101 (2017).CrossRefGoogle Scholar
  17. 17.
    T.L. Ren, H. Tian, D. Xie, and Y. Yang, Sensors (Basel) 12, 6685 (2012).CrossRefGoogle Scholar
  18. 18.
    A.M. Dhonkal, V. Agarwal, and K. Segar, Int. Res. J. Eng. Technol. 4, 1693 (2017).Google Scholar
  19. 19.
    Y. Wang, C. Lee, and C. Chiang, Sensors (Basel) 7, 2389 (2007).CrossRefGoogle Scholar
  20. 20.
    P. Argyrakis, A. Hamilton, B. Webb, Y.X. Zhang, T. Gonos, and R. Cheung, Microelectron. Eng. 84, 1749 (2007).CrossRefGoogle Scholar
  21. 21.
    T. Kang, Appl. Phys. Lett. 104, 073117 (2014).CrossRefGoogle Scholar
  22. 22.
    X.Q. Liao, Q.L. Liao, X.Q. Yan, Q.J. Liang, H.S. Si, M.H. Li, H.L. Wu, S.Y. Cao, and Y. Zhang, Adv. Funct. Mater. 25, 2395 (2015).CrossRefGoogle Scholar
  23. 23.
    T. Dinh, H. Phan, T. Nguyen, A. Qamar, P. Woodfield, Y. Zhu, N. Nguyen, and D.V. Dao, J. Phys. D Appl. Phys. 50, 215401 (2017).CrossRefGoogle Scholar
  24. 24.
    T. Dinh, H. Phan, A. Qamar, N. Nguyen, and D.V. Dao, RSC Adv. 6, 77267 (2016).CrossRefGoogle Scholar
  25. 25.
    E. Voigtman, Anal. Chem. 69, 226 (1997).CrossRefGoogle Scholar
  26. 26.
    B.E. Walden, R.K. Surr, K.W. Grant, W.V. Summers, M.T. Cord, and O. Dyrlund, J. Am. Acad. Audiol. 16, 662 (2005).CrossRefGoogle Scholar
  27. 27.
    M. Hatami, S. Vahdani, and D.D. Ganji, HBRC J. 10, 191 (2014).CrossRefGoogle Scholar
  28. 28.
    T.M. Wang, Int. J. Non-Linear Mech. 4, 389 (1969).CrossRefGoogle Scholar
  29. 29.
    C. Athisakul, B. Phungpaingam, G. Juntarakong, and S. Chucheepsakul, Math. Probl. Eng. 2012, 1 (2011).CrossRefGoogle Scholar
  30. 30.
    K.K. Al-Ahmady, Int. Radon Symp. 3, 1 (1996).Google Scholar
  31. 31.
    H.D. Tahzeeb, M. Yash, K. Sathiyamoorthy, J. Srinivas, and K.P. Pratheesh, IOP Conf. Ser. Mater. Sci. Eng. 234, 1 (2017).Google Scholar
  32. 32.
    B. Buchholz, A. Afchine, and V. Ebert, Atmos. Meas. Tech. 7, 3653 (2014).CrossRefGoogle Scholar
  33. 33.
    J. Hendiger, M. Chludzinska, and P. Zietek, PLoS ONE 11, 1 (2016).CrossRefGoogle Scholar
  34. 34.
    T. Dinh, H. Phan, T. Nguyen, D.V. Dao, P. Woodfield, A. Qamar, and N. Nguyen, J. Mater. Chem. C 3, 8776 (2015).CrossRefGoogle Scholar
  35. 35.
    A. Berzina, V. Tupureina, R. Orlovs, and M. Knite, Adv. Mater. Res. 1117, 187 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of SciencesNational Center for Nanoscience and Technology (NCNST)BeijingChina
  2. 2.Department of ChemistryCapital Normal UniversityBeijingChina
  3. 3.School of Materials ScienceAnhui University of Science and TechnologyHuainanChina
  4. 4.Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations